Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this research project, the measurements of the ultrasonic P- and S-waves and seismic cone penetration testing (CPT) were applied to identify subsurface conditions and properties of clayey soil stabilized with lime/cement columns in the Stockholm Norvik Port, Sweden. Applied geophysical methods enabled to identify a connection between the resistance of soil and strength in the stabilized columns. The records of the seismic tests were obtained in the laboratory of Swedish Geotechnical Institute (SGI) through estimated P- and S-wave velocities using techniques of resonance frequency measurement of the stabilized specimens. The CPT profiles were used to evaluate the quality of the lime/cement columns of the reinforced soil by the interpretation of signals. The relationship between the P- and S-waves demonstrated a gain in strength during soil hardening. The quality of soil was evaluated by seismic measurements with aim to achieve sufficient strength of foundations prior to the construction of the infrastructure objects and industrial works. Seismic CPT is an effective method essential to evaluate the correct placement of the CPT inside the column. This work demonstrated the alternative seismic methods supporting the up-hole technology of drilling techniques for practical purpose in civil engineering and geotechnical works.
Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Department of Investments, Technology and Environment, Swedish Transport Administration, Malmö, Sweden
  2. Faculty of Engineering, Department of Building and Environmental Technology, Division of Building Materials, Lund University, Lund, Sweden
  3. École Polytechnique de Bruxelles, Laboratory of Image Synthesis and Analysis (LISA), Université Libre de Bruxelles (ULB), Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

This study was carried out to evaluate the effect of steel slag (SS) as a by-product as an additive on the geotechnical properties of expansive soil. A series of laboratory tests were conducted on natural and stabilized soils. Steel slag (SS) was added at a rate of 0, 5, 10, 15, 20, and 25% to the soil. The conducted tests are consistency limits, specific gravity, grain size analysis, modified Proctor compaction, free swell, unconfined compression strength, and California Bearing Ratio. The Atterberg limit test result shows that the liquid limit decreases from 90.8 to 65.2%, the plastic limit decreases from 60.3 to 42.5%, and the plasticity index decreases from 30.5 to 22.7% as the steel slag of 25% was added to expansive soil. With 25% steel slag content, specific gravity increases from 2.67 to 3.05. The free swell value decreased from 104.6 to 58.2%. From the Standard Proctor compaction test, maximum dry density increases from 1.504 to 1.69 g/cm3 and optimum moisture content decreases from 19.77 to 12.01 %. Unconfined compressive strength tests reveal that the addition of steel slag of 25% to expansive soil increases the unconfined compressive strength of the soil from 94.3 to 260.6 kPa. The California Bearing Ratio test also shows that the addition of steel slag by 25% increases the California Bearing ratio value from 3.64 to 6.82%. Hence, steel slag was found to be successfully improving the geotechnical properties of expansive soil.
Go to article

Authors and Affiliations

Worku Firomsa Kabeta
1 2
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gabriela Narutowicza 11/12, 80-233, Gdansk, Poland
  2. Jimma University, Faculty of Civil and Environmental Engineering, Jimma saris, 378, Jimma, Ethiopia
Download PDF Download RIS Download Bibtex

Abstract

To guarantee a durable pavement construction that only needs a little care, it is crucial to manage problematic soil conditions properly and prepare the foundation. Some organizations remove soils since they have realized they do not function as well as other materials (for example, a state specification dictating that frost susceptible loess could not be present in the frost penetration zone). Nevertheless, there are more advantageous or desirable courses of action than this (e.g., excavation might create a disturbance, plus additional issues of disposal and removal). The subgrade conditions described in the preceding section may be improved by stabilization, offering an alternative solution. It is impossible to overstate the importance of ensuring a homogeneous soil profile in terms of density, moisture content, and textural categorization in the top section of the subgrade. Thru soil sub-cutting or other stabilizing methods, this consistency may be attained. Additionally, stabilization may be utilized to prevent swelling in expansive materials, create a weather-resistant work platform, enhance soil workability, and limit issues with frost heave. Alternative stabilizing techniques will be discussed in this part, and advice for choosing the best technique will be adequately provided. The current review paper aims to identify bridge issues related to soft soil and takes two ways of soft soil stabilization: chemical and mechanical. The finding of both methods show that the compressive strength and settlement have been improved after using waste materials; therefore, using waste materials as a cement replacement is considered one of the expansive utilized methods in most construction applications and bridges of that applications.
Go to article

Authors and Affiliations

Mayadah W. Falah
1 2
Haitham Muteb
2

  1. Building and Construction Engineering Technology Department, Al-Mustaqbal University,Hillah 51001, Iraq
  2. Department of Civil Engineering, College of Engineering/University of Babylon, Babylon, 51001
Download PDF Download RIS Download Bibtex

Abstract

Soil stabilization techniques are widely used for road construction to improve the properties of the subgrade materials. Using new additives and stabilizers to improve soil properties can reduce the costs of construction and reduce the possible negative effects of these materials on the environment. The purpose of this study was to evaluate the use of a liquid based nano-material called EarthZyme (EZ) and cement kiln dust (CKD) as admixtures to improve the soil properties. A mixture of two soils was used in this study which were prepared from mixing sand soil and fine-grained soil. Compaction tests were performed on the soil that was stabilized with the CKD to determine the density-water content relationships. Unconfined compression tests were also conducted on specimens without treatment, specimen treated with the CKD only, and specimens treated with the CKD and the EZ after curing period for seven days. The obtained results indicated that adding the CKD to the soil decreased the values of the unconfined compression strength (UCS) from 5 to 15 percent. However, adding the CKD reduced the maximum dry density (MDD) from 10 to 12 %. As discussed herein, soil stabilization with the EZ had insignificant effects on the results obtained from the unconfined compression test.
Go to article

Authors and Affiliations

Ahmed Hazim Abdulkareem
1
ORCID: ORCID
Saadoon O. Eyada
2
ORCID: ORCID
Nabeel S. Mahmood
3
ORCID: ORCID

  1. PhD, Civil Engineering Department, University of Anbar, Ramadi, Iraq
  2. MSCE, Civil Engineering Department, Selcuk University, Turkey
  3. PhD, The Department of Dams and Water Resources, University of Anbar, Ramadi, Iraq

This page uses 'cookies'. Learn more