Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 121
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The influence of rapid solidification from the liquid state on the structure of Al71Ni24Fe5 alloy was studied. The samples were prepared by induction melting (ingots) and high pressure die casting into a copper mold (plates). The structure was examined by X-ray diffraction (XRD), light microscopy and high resolution transmission electron microscopy (HRTEM). The mechanism of crystallization was described on the basis of differential scanning calorimetry (DSC) heating and cooling curves, XRD patterns, isothermal section of Al-Ni-Fe alloys at 850°C and binary phase diagram of Al-Ni alloys. The fragmentation of the structure was observed for rapidly solidified alloy in a form of plates. Additionally, the presence of decagonal quasicrystalline phase D-Al70.83Fe9.83Ni19.34 was confirmed by phase analysis of XRD patterns, Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) of transmission electron microscopy images. The metastable character of D-Al70.83Fe9.83Ni19.34 phase was observed because of the lack of thermal effects on the DSC curves. The article indicates the differences with other research works and bring up to date the knowledge about Al71Ni24Fe5 alloys produced by two different cooling rates.
Go to article

Bibliography

[1] Tsai, A.P., Inoue, A. & Masumoto, T. (1989). New decagonal Al–Ni–Fe and Al–Ni–Co alloys prepared by liquid quenching. Materials Transactions, JIM. 30(2), 150-154. DOI: 10.2320/matertrans1989.30.150.
[2] Lin, Y., Mao, S., Yan, Z., Zhang, Y. & Wang, L. (2017). The enhanced microhardness in a rapidly solidified Al alloy. Material Science and Engneering: A. 692, 182-191. DOI: 10.1016/j.msea.2017.03.052.
[3] Kula, A., Blaz, L. & Lobry, P. (2016) Structure and properties studies of rapidly solidified Al-Mn alloys. Key Engineering Materials. 682, 199-204. DOI: 10.4028/www.scientific.net/KEM.682.199.
[4] Lavernia, E.J. & Srivatsan, T.S. (2010). The rapid solidification processing of materials: Science, principles, technology, advances, and applications. Journal of Materials Science. 45, 287-325. DOI: 10.1007/s10853-009-3995-5.
[5] Sukhova, O.V., Polonskyy, V.A. & Ustinovа, K.V. (2017). Structure formation and corrosion behaviour of quasicrystalline Al-Ni-Fe alloys. Physics and Chemistry of Solidstate. 18(2), 222-227. DOI: 10.15330/pcss.18.2.222-227.
[6] Kridli, G.T., Friedman, P.A. & Boileau, J.M. (2010). Manufacturing processes for light alloys. In P.K. Mallick (Eds.), Materials, Design and Manufacturing for Lightweight Vehicles (pp. 235-274). Woodhead Publishing.
[7] Bonollo, F., Gramegna, N. & Timelli, G. (2015). High-pressure die-casting: Contradictions and challenges. JOM: The Journal of the Minerals, Metals & Materials Society. 67, 901-908. DOI: 10.1007/s11837-015-1333-8.
[8] Naglič, I., Samardžija, Z., Delijić, K., Kobe, S., Dubois, J.M., Leskovar, B. & Markoli, B. (2017). Metastable quasicrystals in Al–Mn alloys containing copper, magnesium and silicon. Journal of Material Science. 52, 13657-13668. DOI: 10.1007/s10853-017-1477-8.
[9] He, Z., Ma, H., Li, H., Li, X. & Ma, X. (2016). New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy. Scientific Reports. 6, 22337. DOI: 10.1038/srep22337.
[10] Kühn, U., Eckert, J., Mattern, N. & Schultz, L. As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Applied Physics Letter. 77, 3176-3178. DOI: 10.1063/1.1326036.
[11] Avar, B., Gogebakan, M., Yilmaz, F. (2008). Characterization of the icosahedral quasicrystalline phase in rapidly solidified Al-Cu-Fe alloys. Zeitschrift Für Kristallographie- Crystalline Materials. 223, 731-734. DOI: 10.1524/zkri.2008.1077.
[12] Surowiec, M.R. (2017). Quasicrystals. Warsaw: Polish Scientific Publishers PWN. (in Polish) [13] Ishimasa, T. (2016). Mysteries of icosahedral quasicrystals: How are the atoms arranged? IUCrJ. 3, 230-231. DOI: 10.1107/S2052252516009842.
[14] Pedrazzini, S., Galano, M., Audebert, F., Siegkas, P., Gerlach, R., Tagarielli, V.L. & Smith, G.D.W. (2019). High strain rate behaviour of nano-quasicrystalline Al93Fe3Cr2Ti2 alloy and composites. Materials Science and Engineering: A. 764, 138201. DOI: 10.1016/j.msea.2019.138201.
[15] Shadangi, Y., Shivam, V., Singh, M.K., Chattopadhyay, K., Basu, J. & Mukhopadhyay, N.K. (2019). Synthesis and characterization of Sn reinforced Al-Cu-Fe quasicrystalline matrix nanocomposite by mechanical milling. Journal of Alloys and Compounds. 797, 1280-1287. DOI: 10.1016/j.jallcom.2019.05.128.
[16] Audebert, F., Prima, F., Galano, M., Tomut, M., Warren, P.J., Stone, I.C. & Cantor, B. (2002). Structural characterisation and mechanical properties of nanocomposite Al-based alloys. Materials Transactions. 43, 2017-2025. DOI: 10.2320/matertrans.43.2017.
[17] Inoue, A. & Kimura, H. (2000). High-strength aluminum alloys containing nanoquasicrystalline particles. Materials Science and Engineering: A. 286, 1-10. DOI: 10.1016/S0921-5093(00)00656-0.
[18] Li, F.C., Liu, T., Zhang, J.Y., Shuang, S., Wang, Q., Wang, A.D., Wang, J.G. & Yang, Y. (2019). Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Materials Today Advances. 4, 100027. DOI: 10.1016/j.mtadv.2019.100027.
[19] Qiang, J., Wang, D., Bao, C., Wang, Y., Xu, W. & Song, M. (2001). Formation rule for Al-based ternary quasi-crystals : Example of Al–Ni– Fe decagonal phase. Journal of Materials Reserach. 16(9) 2653-2660. DOI: 10.1557/JMR.2001.0364.
[20] Audebert, F. (2005). Amorphous and nanostructured Al-Fe and Al-Ni based alloys. In Idzikowski B., Švec P., Miglierini M. (Eds.) Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors. NATO Science Series (Series II: Mathematics, Physics and Chemistry). Dordrecht: Springer.
[21] Milman, Y.V., Sirko, A.I., Iefimov, M.O., Niekov, O.D., Sharovsky, A.O. & Zacharova, N.P. (2006). High strength aluminum alloys reinforced by nanosize quasicrystalline particles for elevated temperature application. High Temperature Materials and Processes. 25(1-2), 19-29. DOI: 10.1515/HTMP.2006.25.1-2.19.
[22] Yadav, T.P., Mukhopadhyay, N.K., Tiwari, R.S. & Srivastava, O.N. (2007). Studies on Al-Ni-Fe decagonal quasicrystalline alloy prepared by mechanical alloying, Philosophical Magazine. 87(18-21), 3117-3125. DOI: 10.1080/14786430701355208.
[23] Babilas, R., Młynarek, K., Łoński, W., Lis, M., Łukowiec, D., Kądziołka-Gaweł, M., Warski, T., Radoń, A. (2021). Analysis of thermodynamic parameters for designing quasicrystalline Al-Ni-Fe alloys with enhanced corrosion resistance. Journal of Alloys and Compounds. 868, 159241. DOI: 10.1016/j.jallcom.2021.159241.
[24] Grushko, B., Lemmerz, U., Fischer, K. & Freiburg, C. (1996). The low-temperature instability of the decagonal phase in Al-Ni-Fe. Physica Status Solidi (a). 155, 17-30. DOI: 10.1002/pssa.2211550103.
[25] Raghavan, V. (2009). Al-Fe-Ni (Aluminum-Iron-Nickel). Journal of Phase Equilibria and Diffusion. 30(4), 85-88. DOI: 10.1007/s11669-008-9452-3.
[26] Konieczny, M., Mola, R., Thomas, P. & Kopcial, M. (2011). Processing, microstructure and properties of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Archives of Metallurgy and Materials. 56(3), 693-702. DOI: 10.2478/v10172-011-0076-y.
[27] Čelko, L., Klakurková, L. & Švejcar, J. (2010). Diffusion in Al-Ni and Al-NiCr interfaces at moderate temperatures. Defect and Diffusion Forum. 297-301, 771-777. DOI: 10.4028/www.scientific.net/DDF.297-301.771.
[28] Titran, R.H., Vedula, K.M. & Anderson, G.G. (1984). High temperature properties of equialomic FeAl with ternary additions. MRS Proceedings. 39(309), 1471-1478. DOI: 10.1557/PROC-39-309.
Go to article

Authors and Affiliations

K. Młynarek
1
T. Czeppe
2
R. Babilas
1

  1. Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland
  2. Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 25 Reymonta 5 St., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to determine the leading phase of the Fe - 4.25% C eutectic alloy, the method of directional crystallization, which allows to study the character of the solid / liquid growth front, was used. Examined eutectic was directionally solidified with a constant temperature gradient of G = 33,5 K/mm and growth rate of v = 125 μm/s (450 mm/h). The Bridgman technique was used for the solidification process. The sample was grown by pulling it downwards up to 30 mm in length. The alloy quenched by rapid pulling down into the Ga-In-Sn liquid metal. The sample was examined on the longitudinal section using a light microscope and scanning electron microscope. The shape of the solid/liquid interface and particularly the leading phase protrusion were revealed. The formation of the concave – convex interface has been identified in the quasi-regular eutectic growth arrested by quenching. The cementite phase was determined to be a leading phase. The total protrusion d is marked in the adequate figure.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an algorithm will be presented that enables solving the two-phase inverse Stefan problem, where the additional information consists of temperature measurements in selected points of the solid phase. The problem consists in the reconstruction of the function describing the heat transfer coefficient, so that the temperature in the given points of the solid phase would differ as little as possible from the predefined values. The featured examples of calculations show a very good approximation of the exact solution and stability of the algorithm.

Go to article

Authors and Affiliations

Damian Słota
Download PDF Download RIS Download Bibtex

Abstract

The work concerns of modeling the process of manufacturing machine parts by casting method. Making a casting without internal defects is a difficult task and usually requires numerous computer simulations and their experimental verification at the prototyping stage. Numerical simulations are then of priority importance in determining the appropriate parameters of the casting process and in selecting the shape of the riser for the casting fed with it. These actions are aimed at leading shrinkage defects to the riser, so that the casting remains free from this type of defects. Since shrinkage defects usually disqualify the casting from its further use, this type of research is still valid and requires further work. The paper presents the mathematical model and the results of numerical simulations of the casting solidification process obtained by using the Finite Element Method (FEM). A partial differential equation describing the course of thermal phenomena in the process of 3D casting creating was applied. This equation was supplemented with appropriate boundary and initial conditions that define the physical problem under consideration. In numerical simulations, by selecting the appropriate shape riser, an attempt was made to obtain a casting without internal defects, using a simple method of identifying their location. This is the main aim of the research as such defects in the casting disqualify it from use.
Go to article

Authors and Affiliations

L. Sowa
1
ORCID: ORCID
T. Skrzypczak
1
ORCID: ORCID
P. Kwiatoń
1
ORCID: ORCID

  1. Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, Dąbrowskiego 73, 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Knowledge about complex physical phenomena used in the casting process simulation requires continuous complementary research and improvement in mathematical modeling. The basic mathematical model taking into account only thermal phenomena often becomes insufficient to analyze the process of metal solidification, therefore more complex models are formulated, which include coupled heat-flow phenomena, mechanical or shrinkage phenomena. However, such models significantly complicate and lengthen numerical simulations; therefore the work is limited only to the analysis of coupled thermal and flow phenomena. The mathematical description consists then of a system of Navier-Stokes differential equations, flow continuity and energy. The finite element method was used to numerically modeling this problem. In computer simulations, the impact of liquid metal movements on the alloy solidification process in the casting-riser system was assessed, which was the purpose of this work, and the locations of possible shrinkage defects were pointed out, trying to ensure the right supply conditions for the casting to be free from these defects.
Go to article

Authors and Affiliations

L. Sowa
1
ORCID: ORCID
T. Skrzypczak
1
ORCID: ORCID
P. Kwiatoń
1
ORCID: ORCID

  1. Czestochowa University of Technology, Department of Mechanics and Machine Design Fundamentals, 73 Dąbrowskiego Str., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of alloys plays an important role at their crystallization and influences the solid phase formation, and thus, microstructure and properties. The present paper studies the release of the heat of crystallization of alloyed wear-resistant cast irons in order to determine the quantitative patterns of the chemical composition influence to the kinetics of crystallization. The differential thermal analysis was applied to get the data of heat release, its rate at cast iron temperature decrease. The normalized dependence of the amount of crystallization heat over time was obtained. The main temperature parameters were analyzed and four stages at irons crystallization were established and characterized with their duration and released heat. The multiple correlation analysis allowed considering a numerous physical and chemical factors and distinguishing their role at crystallization of irons. As a result, the quantitative regularities are determined of influencing the content of alloying elements, impurities and carbides on a heat and time of crystallization at the different stages of solidification, which are of great importance in developing alloyed irons with required quality and properties.
Go to article

Authors and Affiliations

Y. Aftandiliants
1
ORCID: ORCID
S. Gnyloskurenko
1 2
ORCID: ORCID
H. Meniailo
3
ORCID: ORCID
V. Khrychikov
3
ORCID: ORCID
V. Lomakin
4
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Ukraine
  2. Physical and Technological Institute of Metals and Alloys, National Academy of Sciences of Ukraine, Ukraine
  3. Ukrainian State University of Science and Technologies, Ukraine
  4. Central Ukrainian National Technical University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Solidification/Stabilization (S/S) method with cement as a binder to remediate metals in petroleum sludge has been successfully proven. However, this technique has not yet been explored to remediate organic contaminants since a high concentration of Total Petroleum Hydrocarbon (TPH) was also detected in the sludge. This study focuses on remediating 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds in raw petroleum sludge with Portland cement as a binder using the S/S method. The initial concentration of 16 PAHs in the raw sludge was first measured before the performance of the S/S method to remediate the PAHs were evaluated. The S/S matrices were tested for leaching behavior and strength after 7 and 28 days by air curing. The leaching test was measured using the Toxicity Characteristics Leaching Procedure (TCLP), and the remaining PAHs concentration in the matrices was analyzed using a Gas Chromatography-Mass Spectrometer (GC-MS). In the raw sludge, all 16 PAHs compounds were below the standard limit except for Benzo(a)anthracene, Benzo(a)pyrene, Dibenzo(ah)anthracene, and Indeno(1,2,3- cd_ pyrene), which are considered as high rings PAHs. The high rings PAHs show lower concentration in leachate than low rings PAHs, which indicates the potential of the S/S method in remediating high rings PAHs. The high sludge ratio in S/S matrices has shown that the percentage strength is increasing, similar to Portland cement. Therefore, this study contributed to the possibility of the S/S method in the remediation of PAHs in petroleum sludge by using only Portland cement as a binder.
Go to article

Authors and Affiliations

Noor Faiza Roslee
1
ORCID: ORCID
Nor Amani Filzah Mohd Kamil
1
ORCID: ORCID
Aeslina Abdul Kadir
2
ORCID: ORCID
Abdul Rahim Jalil
3
ORCID: ORCID
Nurhidayah Hamzah
4
ORCID: ORCID
Norazian Mohamed Noor
5
ORCID: ORCID
Andrei Victor Sandu
6
ORCID: ORCID

  1. Universiti Tun Hussien Onn Malaysia, Faculty of Civil Engineering and Built Environment, Batu Pahat, Johor, Malaysia
  2. Universiti Tun Hussien Onn Malaysia, Micro Pollutant Research Centre, Batu Pahat, Johor, Malaysia
  3. Pengerang Refining Company Sdn. Bhd. 81600 Pengerang, Johor Malaysia
  4. Universiti Teknologi MARA Department of Water Resource and Environmental System, 40450, Selangor, Malaysia
  5. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, 01000 Perlis Malaysia
  6. "Gheorghe Asachi” Technical University, Faculty of Materials Science and Engineering, 700050 lasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

A vertical cut at the mid-depth of the 15-ton forging steel ingot has been performed by curtesy of the CELSA – Huta Ostrowiec plant.

Some metallographic studies were able to reveal not only the chilled undersized grains under the ingot surface but columnar grains and

large equiaxed grains as well. Additionally, the structural zone within which the competition between columnar and equiaxed structure

formation was confirmed by metallography study, was also revealed. Therefore, it seemed justified to reproduce some of the observed

structural zones by means of numerical calculation of the temperature field. The formation of the chilled grains zone is the result of

unconstrained rapid solidification and was not subject of simulation. Contrary to the equiaxed structure formation, the columnar structure

or columnar branched structure formation occurs under steep thermal gradient. Thus, the performed simulation is able to separate both

discussed structural zones and indicate their localization along the ingot radius as well as their appearance in term of solidification time.

Go to article

Authors and Affiliations

W. Skuza
B. Kania
P. Kwapisiński
W. Wołczyński
A.W. Bydałek
W. Wajda
Download PDF Download RIS Download Bibtex

Abstract

Directional solidification of ledeburite was realised out using a Bridgman’s device. The growth rate for movement sample v=83.3 μm/s

was used. In one sample the solidification front was freezing. The value of temperature gradient in liquid at the solidification front was

determined. Interfacial distance λ on the samples was measured with NIS-Elements application for image analysis.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the deviation from eutectic composition in boundary layer for eutectic growth is studied by phase-field method. According to a series of artificial phase diagram, the lamellar eutectic growth of these alloy is simulated during directional solidification. At steady state, average growth velocity of eutectic lamella is equal to the pulling velocity. With the increasing of the liquidus slope of β phase, the average composition in boundary layer would deviate from eutectic composition and the deviation increases. The constitutional undercooling difference between both solid phases caused by the deviation increases with the increasing of the deviation. The β phase would develop a depression under the influence of the deviation.

Go to article

Authors and Affiliations

Zhixin Tu
Jianxin Zhou
Yajun Yin
Xiaoyuan Ji
Xu Shen
Download PDF Download RIS Download Bibtex

Abstract

The results of examinations of the influence of titanium-boron inoculant on the solidification, the microstructure, and the mechanical

properties of AlZn20 alloy are presented. The examinations were carried out for specimens cast both of the non-modified and the

inoculated alloy. There were assessed changes in the alloy overcooling during the first stage of solidification due to the nuclei-forming

influence of the inoculant. The results of quantitative metallographic measurements concerning the refinement of the grain structure of

casting produced in sand moulds are presented. The cooling rate sensitivity of the alloy was proved by revealing changes in morphology of

the α-phase primary crystals. Differences in mechanical properties resulting from the applied casting method and optional inoculation were

evaluated.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

There has been a growing interest in the peritectic due to increasing productivity, quality, and alloy development. Differential scanning calorimetry (DSC) has traditionally been used to study steel solidification but suffers significant limitations when measuring the solidus and peritectic. This work covers a new thermal analysis system that can characterize the peritectic reaction. Heats of AISI/SAE 1030 and 4130 steel were poured to provide some benchmarking of this new technique. The peritectic was detected and the reaction temperature measured. Measurements agree reasonably well with reference information. A review of the literature and thermodynamic calculations did find some disagreement on the exact temperatures for the peritectic and solidus. Some of this difference appears to be related to the experimental techniques employed. It was determined that the system developed accurately indicates these reaction temperatures. The system provides a unique method for examining steel solidification that can be employed on the melt deck.

Go to article

Authors and Affiliations

R.B. Tuttle
Download PDF Download RIS Download Bibtex

Abstract

Directionally solidified sample of Fe-Fe3C eutectic alloy were produced under an argon atmosphere in a vacuum Bridgman-type furnace to

study the eutectic growth with v = 167 μm/s pulling rate and constant temperature gradient G = 33.5 K/mm. Since how the growth texture

of eutectic cementite is related to its growth morphology remains unclear, the current study aims to examine this relationship. The technique

such as X-ray diffraction, have been used for the crystallographic analysis of carbide particles in white cast irons.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
T. Szykowny
Download PDF Download RIS Download Bibtex

Abstract

The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism

of decohesion – the intergranular one – occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking

initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence

of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite

precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage

solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C

revealed low or very low strength of high-carbon cast steels.

Go to article

Authors and Affiliations

Z. Stradomski
G. Stradomski
S. Stachura
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.
Go to article

Authors and Affiliations

M. Górny
E. Fraś
Download PDF Download RIS Download Bibtex

Abstract

The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1) on microstructure (austenite and graphite fraction, density of austenite and graphite grains) and temperature curves in 2 mm wall ductile iron casting has been done.
Go to article

Authors and Affiliations

A.A. Burbelko
M. Górny
D. Gurgul
W. Kapturkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The exploitation and processing of lignite in the Bełchatów region is connected with the formation of various mineral waste materials: varied in origin, mineral and chemical composition and raw material properties of the accompanying minerals, ashes and slags from lignite combustion and reagipsum from wet flue gas desulphurisation installations. This paper presents the results of laboratory tests whose main purpose was to obtain data referring to the potential use of fly ashes generated in the Bełchatów Power Plant and selected accompanying minerals exploited in the Bełchatów Mine in the form of self-solidification mixtures. The beidellite clays were considered as the most predisposed for use from the accompanying minerals , due to pozzolanic and sorption properties and swelling capacity. Despite the expected beneficial effects of clay minerals from the smectite group on the self-settling process as well as the stability of such blends after solidification, the results of physical-mechanical tests (compressive strength and water repellence) were unsatisfactory. It was necessary to use Ca (OH)2, obtained from the lacustrine chalk as an activator of the self-settling process It was necessary to use lacustrine chalk as an activator of the self-solidification process. The presence of calcium will allow the formation of cement phases which will be able to strongly bond the skeletal grains. Also, the addition of reagipsum to the composition of the mixture would contribute to the improvement of the physico-mechanical parameters. The elevated SO4 2– ion in the mixture during the solidification allows for the crystallization of the sulphate phases in the pore space to form bridges between the ash and clay minerals. The use of mixtures in land reclamation unfavourably transformed by opencast mining in the Bełchatów region would result in measurable ecological and economic benefits and would largely solve the problem of waste disposal from the from the operation and processing of lignite energy.

Go to article

Authors and Affiliations

Elżbieta Hycnar
Marek Waldemar Jończyk
Tadeusz Ratajczak
Download PDF Download RIS Download Bibtex

Abstract

Porosity is one of the major problems in casting operations and there are several discussions in the literature about the porosity formation in aluminum castings. Bifilms are the defects that are introduced into the melt by turbulence. They can be detected with reduced pressure test and presented numerically by measuring bifilm index. The measure of bifilm index is the sum of total oxide length given in millimeters from the cross-section of reduced pressure test sample solidified under 0.01 MPa. In this work, low pressure die casting (LPDC) unit was built in an attempt to enhance the producibility rate. The unit consists of a pump housing that was placed inside the melt in the melting furnace where the pressure was applied instead of the whole melt surface. It was observed that the melt quality of A356 alloy was deteriorated over time which had led to higher porosity. This was attributed to the increased oxide thickness of the bifilm by the consumption of air in between the folded oxides. A relationship was found between bifilm index and pore formation.
Go to article

Bibliography

[1] Campbell, J. (2011). Complete Casting Handbook: Metal Casting Processes. Techniques and Design. Elsevier Science.
[2] Bonollo, F., Urban, J., Bonatto, B. & Botter, M. (2005). Gravity and low pressure die casting of aluminium alloys: a technical and economical benchmark. La Metallurgia Italiana. 6, 23-32.
[3] Dispinar, D. & J. Campbell, (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17(5), 287-294.
[4] Raiszadeh, R., & Griffiths, W.D. (2006). A method to study the history of a double oxide film defect in liquid aluminum alloys. Metallurgical and Materials Transactions B. 37(6), 865-871.
[5] Raiszadeh, R., & Griffiths, W.D. (2008). A semi-empirical mathematical model to estimate the duration of the atmosphere within a double oxide film defect in pure aluminum alloy. Metallurgical and Materials Transactions B. 39(2), 298-303.
[6] Raiszadeh, R., & Griffiths, W.D. (2011). The effect of holding liquid aluminum alloys on oxide film content. Metallurgical and Materials Transactions B. 42(1), 133-143.
[7] Aryafar, M., Raiszadeh, R., & Shalbafzadeh, A. (2010). Healing of double oxide film defects in A356 aluminium melt. Journal of materials science. 45(11), 3041-3051.
[8] Farhoodi, B., Raiszadeh, R., & Ghanaatian, M. H. (2014). Role of double oxide film defects in the formation of gas porosity in commercial purity and Sr-containing Al alloys. Journal of Materials Science & Technology. 30(2), 154-162.
[9] Amirinejhad, S., Raiszadeh, R., & Doostmohammadi, H. (2013). Study of double oxide film defect behaviour in liquid Al–Mg alloys. International Journal of Cast Metals Research. 26(6), 330-338.
[10] Bakhtiarani, F.N., & Raiszadeh, R. (2011). Healing of double-oxide film defects in commercial purity aluminum melt. Metallurgical and Materials Transactions B. 42(2), 331-340.
[11] Bagherpour-Torghabeh, H., Raiszadeh, R., & Doostmohammadi, H. (2017). Role of Mechanical Stirring of Al-Mg Melt in the Healing of Bifilm Defect. Metallurgical and Materials Transactions B. 48(6), 3174-3184.
[12] Nateghian, M., Raiszadeh, R., & Doostmohammadi, H. (2012). Behavior of Double-Oxide Film Defects in Al-0.05 wt pct Sr Alloy. Metallurgical and Materials Transactions B. 43(6), 1540-1549.
[13] Stefanescu, D.M. (2005). Computer simulation of shrinkage related defects in metal castings - a review. International Journal of Cast Metals Research. 18, 129-143.
[14] Zhu, J.D., Cockcroft, S.L., Maijer, D.M. & Ding, R. (2005). Simulation of microporosity in A356 aluminium alloy castings. International Journal of Cast Metals Research. 18, 229-235.
[15] Merlin, M., Timelli, G., Bonollo, F. & Garagnani, G.L. (2009). Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. Journal of Materials Processing Technology. 209(2), 1060-1073.
[16] Zhang, B., Maijer, D.M. & Cockcroft, S.L. (2007). Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels. Materials Science and Engineering: A, 464(1-2), 295-305.
[17] Zhang, B., Cockcroft, S.L., Maijer, D.M., Zhu, J.D. & Phillion, A.B. Casting defects in low-pressure die-cast aluminum alloy wheels. JOM Journal of the Minerals, Metals and Materials Society, 57(11), 36-43.
[18] Campbell, J. (1968). Hydrostatic tensions in solidifying materials. Transactions of the Metallurgical Society of AIME, 242 (February), 264-267.
[19] Campbell, J. (1968). Hydrostatic tensions in solidifying alloys. Transactions of the Metallurgical Society of AIME, 242 (February), 268-271.
[20] Campbell, J. (1967), Shrinkage pressure in castings (The solidification of a Metal Sphere). Transactions of the Metallurgical Society of AIME, 239 (February), 138-142.
[21] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17(5), 280-286.
[22] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M., & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A. 527(16-17), 3719-3725.
[23] Puga, H., Barbosa, J., Azevedo, T., Ribeiro, S. & Alves, J.L. (2016). Low pressure sand casting of ultrasonically degassed AlSi7Mg0. 3 alloy: Modelling and experimental validation of mould filling. Materials & Design. 94, 384-391.
[24] El-Sayed, M.A. & Essa, K. (2018). Effect of mould type and solidification time on bifilm defects and mechanical properties of Al–7si–0.3 mg alloy castings. Computational and Experimental Studies, 23.
[25] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. [26] Gyarmati, G., Fegyverneki, G., Tokár, M., & Mende, T. (2020). The Effects of Rotary Degassing Treatments on the Melt Quality of an Al–Si Casting Alloy. International Journal of Metalcasting. 1-11.
[27] Tiryakioğlu, M. (2020). The Effect of Hydrogen on Pore Formation in Aluminum Alloy Castings: Myth Versus Reality. Metals. 10(3), 368.
[28] Tiryakioğlu, M. (2019). Solubility of hydrogen in liquid aluminium: reanalysis of available data. International Journal of Cast Metals Research. 32(5-6), 315-318.
[29] Tiryakioğlu, M. (2020). A simple model to estimate hydrogen solubility in liquid aluminium alloys. International Journal of Cast Metals Research. 1-3.
Go to article

Authors and Affiliations

O. Gursoy
1
A. Nordmak
2
F. Syvertsen
2
M. Colak
3
K. Tur
4
D. Dispinar
5
ORCID: ORCID

  1. University of Padova, Italy
  2. SINTEF, Norway
  3. University of Bayburt, Turkey
  4. Atilim University, Turkey
  5. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research related to the possibility of inoculation of the AZ91 magnesium alloy casted into ceramic moulds by gadolinium. Effects of gadolinium content (0.1–0.6 wt%) on microstructure of the AZ91 alloy under as-cast state were investigated. The influence of the inoculator on the formation of the microstructure investigated by means of the thermal and derivative analysis by analysing the thermal effects arising during the alloy crystallization resulting from the phases formed. The degree of fragmentation of the microstructure of the tested alloys was assessed by means of the light microscopy studies and an image analysis with statistical analysis was performed. Conducted analyses have aimed at examining on the effect of inoculation of the gadolinium on the differences between the grain diameters and average size of each type of grain by way of measuring their perimeters of all phases, preliminary αMg and eutectics αMg+γ(Mg17Al12) in the prepared examined material.
Go to article

Bibliography

[1] Wang, Y.N. & Huang, J.C. (2007). The role of twinning and untwining in yielding behavior in hot-extruded Mg-Al-Zn. Alloy Acta Materialia. 55(3), 897-905. DOI: 10.1016/ j.actamat.2006.09.010.
[2] Yu, Zhang et. al (2017). Effects of samarium addition on as-cast microstructure, grain fragmentation and mechanical properties of Mg-6Zn-0.4Zr magnesium alloy. Journal of Rare Earths. 167(1), 31-33. DOI: 10.1016/S1002-0721(17)60939-6.
[3] Cao, F.Y, Song, G.L. & Atrens, A. (2016). Corrosion and passivation of magnesium alloys. Corrosion Science, 111(10), 835-845. DOI: 10.1016/j.corsci.2016.05.041.
[4] Mao, X., Yi, Y., Huang, S. & He, H. (2019). Bulging limit of AZ31B magnesium alloy tubes in hydroforming with internal and external pressure. The International Journal of Advanced Manufacturing Technology. 101, 2509-2517. DOI: https://doi.org/10.1007/s00170-018-3076-5.
[5] Władysiak, R. & Kozuń, A. (2015). Structure of AlSi20 alloy in heat treated die casting. Archives of Foundry Engineering.15(1), 113-118. DOI: 10.1515/afe-2015-0021.
[6] Rapiejko, C., Pisarek, B. & Pacyniak, T. (2017). Effect of intensive cooling of alloy AZ91 with a chromium addition on the microstructure and mechanical properties of the casting. Archives of Metallurgy and Materials. 62(4), 2199-2204. DOI: 10.1515/amm-2017-0324.
[7] Zhao, H.L., Guan, S.K. & Zheng, F.Y. (2007). Effects of Sr and B addition on microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Research. 22, 2423-2428. DOI: 10.1557/jmr.2007.0331.
[8] Bonnah, R.C., Fu, Y. & Hao, H. (2019). Microstructure and mechanical properties ofAZ91 magnesium alloy with minor additions of Sm, Si and Ca elements. China Foundry. 16(5), 319-325. DOI: 10.1007/s41230-019-9067-9.
[9] Jafari, H. & Amiryavari, P. (2016). The effects of zirconium and beryllium on microstructure evolution, mechanical properties and corrosion behaviour of as-cast AZ63 alloy. Materials Science & Engineering A. 654, 161-168 DOI: 10.1016/j.msea.2015.12.034.
[10] Boby, A., Ravikumar, K.K., Pillai, U.T.S. & Pai, B.C. (2013). Effect of antimony and yttrium addition on the high temperature properties of AZ91 magnesium alloy. Procedia Engineering 55. 355(5), 98-102. DOI: 10.1016/j.proeng. 2013.03.226.
[11] Huang, W., Yang, X., Mukai, T. & Sakai, T. (2019). Effect of yttrium addition on the hot deformation behaviors and microstructure development of magnesium alloy. Journal of Alloys and Compounds. 786, 118-125. DOI: 10.1016/ j.jallcom.2019.01.269.
[12] Pourbahari, B., Mirzadeh, H., Emamy, M. & Roumina, R. (2018). Enhanced ductility of afine-grained Mg-Gd-Al-Zn magnesium alloy by hot extrusion. Advanced Engineering Materials. 20, 1701171. DOI: 10.1002/adem.201701171.
[13] Tardif, S., Tremblay, R. & Dubé, D. (2010). Influence of cerium on the microstructure and mechanical properties of ZA104 and ZA104 + 0.3Ca magnesium alloys. Material Science and Engineering A. 527, 7519-7529. DOI: 10.1016/j.msea.2010.08.082.
[14] Wang, X.J. et al. (2018). What is going on in magnesium alloys? Journal of Materials Science & Technology. 34(2), 245-247. DOI: 10.1016/j.jmst.2017.07.019.
[15] Nan, J. et. al (2016) Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy. Journal of Rare Earths. 34(6), 632-637. DOI: 10.1016/S1002-0721(16)60072-8.
[16] Miao, Y., Yaohui, L., Jiaan, L. & Yulai, S. (2014). Corrosion and mechanical properties of AM50 magnesium alloy after being modified by 1 wt.% rare earth element gadolinium. Journal of Rare Earth. 723, 558-563. DOI: 10.1016/S1002-0721(14)60108-3.
[17] Mingbo, Y., Caiyuan, Q., Fusheng, P. & Tao, Z. (2011). Comparison of effects of cerium, yttrium and gadolinium additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn magnesium alloy. Journal of Rare Earths. 29(6), 550-557. DOI: 10.1016/S1002-0721(10)60496-6.
[18] Sumida, M., Jung, S. & Okane, T. (2009). Microstructure, solute partitioning and material properties of gadolinium-doped magnesium alloy AZ91D. Journal of Alloys and Compounds. 475. 903-910. DOI: 10.1016/j.jallcom. 2008.08.067/
[19] Pietrowski, S. & Rapiejko, C. (2011). Temperature and microstructure characteristics of silumin casting AlSi9 made with investment casting method. Archives of Foundry Engineering. 11(3), 177-186.
[20] PN-EN 1753:2001. Magnesium and magnesium alloys. Magnesium alloy ingots and castings.
[21] Rapiejko, C., Pisarek, B, Czekaj, E. & Pacyniak, T. (2014). Analysis of AM60 and AZ91 Alloy Crystallisation in ceramic moulds by thermal derivative analisys (TDA). Archive of Metallurgy and Materials. 59(4) DOI: 10.2478/amm-2014-0246.
Go to article

Authors and Affiliations

C. Rapiejko
1
ORCID: ORCID
D. Mikusek
1
P. Just
1
T. Pacyniak
1
ORCID: ORCID

  1. Lodz University of Technology, Department of Materials Engineering and Production Systems, ul. Stefanowskiego 1, 90-924 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mold temperature of the downward continuous unidirectional solidification (CUS) cannot be controlled higher than the liquidus of alloys to be cast. Therefore, the continuous casting speed becomes the main parameter for controlling the growth of columnar crystal structure of the alloy. In this paper, the tin bronze alloy was prepared by the downward CUS process. The microstructure evolution of the CUS tin bronze alloy at different continuous casting speeds was analysed. In order to further explain the columnar crystal evolution, a relation between the growth rate of columnar crystal and the continuous casting speed during the CUS process was built. The results show that the CUS tin bronze alloy mainly consists of columnar crystals and equiaxed crystals when the casting speed is low. As the continuous casting speed increases, the equiaxed crystals begin to disappear. The diameter of the columnar crystal increases with the continuous casting speed increasing and the number of columnar crystal decreases. The growth rate of columnar crystal increases with increasing of the continuous casting speed during CUS tin bronze alloy process.

Go to article

Authors and Affiliations

Jihui Luo
Download PDF Download RIS Download Bibtex

Abstract

The effect of Ca element on the microstructure evolution of the AZ91 magnesium alloy was investigated in this research. The magne-sium-aluminium alloy AZ91 was inoculated with the Emgesal® Flux 5 to refine its microstructure and also improve its microstructure. Six different concentrations of the Emgesal® Flux 5 content were tested, ranging from 0.1 to 0.6% wt., and compared to the baseline of the AZ91 alloy without inoculation. Melted metal was poured into a preheated metallic mould. Samples to test were achieved after turning treatment. Formed microstructure was assessed using an optical microscope. The microstructure was refined for every tested samples. Me-chanical properties such as tensile strength, elongation, Brinell hardness, Vickers microhardness, abrasion resistance and adhesive resistance were tested on the inoculated samples and compared to the non-inoculated AZ91. Introducing an Emgesal®Flux 5 inoculant caused a change in the tensile strength, elongation, Brinell hard-ness, Vickers microhardness, abrasive wear resistance as well as adhesive wear resistance in each examined concentration.
Go to article

Authors and Affiliations

C. Rapiejko
1
ORCID: ORCID
D. Mikusek
1
K. Kubiak
2
ORCID: ORCID
T. Pacyniak
1
ORCID: ORCID

  1. Department of Materials Engineering and Production Systems, Lodz University of Technology, Stefanowskiego 1-15, 90-924 Łódź, Poland
  2. Faculty of Engineering and Physical Sciences, School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Material suppliers typically recommend different additive amounts and applications for foundry practices. Therefore, even in the production of the same standard materials, different results may be obtained from various production processes on different foundry floors. In this study, the liquid metal prepared with the addition of different proportions of a FeSi-based inoculation, which is most commonly used in foundries in the production of a cast iron material with EN-GJL-250 lamellar graphite cast iron, was cast into sand molds prepared with a model designed to provide different solidification times. In this way, the optimization of the inoculation amounts on the casting structure for different solidification times was investigated. In addition, hardness values were determined depending on solidification time in varying amounts of inoculation additions. SolidCast casting simulation software was used to determine the casting model geometry and solidification time. In the scope of the study, sand casting, modeling, microstructure analysis, image analysis, microstructure analysis, and hardness tests techniques were used. When the results are examined, the required amount of inoculation for the optimal structure is optimized for the application procedure depending on the casting module and the solidification time.
Go to article

Authors and Affiliations

M. Çolak
1
ORCID: ORCID
E. Uslu
1
ORCID: ORCID
Ç. Teke
1
ORCID: ORCID
F. Şafak
2
Ö. Erol
2
Y. Erol
2
Y. Çoban
2 3
M. Yavuz

  1. Bayburt University, Turkey
  2. Konya Technical University, Turkey
  3. Yavuzsan A.Ş., Turkey
Download PDF Download RIS Download Bibtex

Abstract

The mathematical model and numerical simulations of the solidification of a cylindrical shaped casting, which take into account the process of filling the mould cavity by liquid metal and feeding the casting through the riser during its solidification, are presented in the paper. Mutual dependence of thermal and flow phenomena were taken into account because have an essential influence on solidification process. The effect of the riser shape on the effectiveness of feeding of the solidifying casting was determined. In order to obtain the casting without shrinkage defects, an appropriate selection of riser shape was made, which is important for foundry practice. Numerical calculations of the solidification process of system consisting of the casting and the conical or cylindrical riser were carried out. The velocity fields have been obtained from the solution of momentum equations and continuity equation, while temperature fields from solving the equation of heat conductivity containing the convection term. Changes in thermo-physical parameters as a function of temperature were considered. The finite element method (FEM) was used to solve the problem.

Go to article

Authors and Affiliations

L. Sowa
ORCID: ORCID
T. Skrzypczak
ORCID: ORCID
P. Kwiatoń
ORCID: ORCID

This page uses 'cookies'. Learn more