Search results

Filters

  • Journals

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a literature review on the topic of vapour power plants working according to the two-phase thermodynamic cycle with supercritical parameters. The main attention was focused on a review of articles and papers on the vapour power plants working using organic circulation fluids powered with low- and medium-temperature heat sources. Power plants with water-steam cycle supplied with a high-temperature sources have also been shown, however, it has been done mainly to show fundamental differences in the efficiency of the power plant and applications of organic and water-steam cycles. Based on a review of available literature references a comparative analysis of the parameters generated by power plants was conducted, depending on the working fluid used, the type and parameters of the heat source, with particular attention to the needs of power plant internal load.
Go to article

Authors and Affiliations

Szymon Mocarski
Aleksandra Borsukiewicz-Gozdur
Download PDF Download RIS Download Bibtex

Abstract

This article describes the validation of a supercritical steam cycle. The cycle model was created with the commercial program GateCycle and validated using in-house code of the Institute of Power Engineering and Turbomachinery. The Institute's in-house code has been used extensively for industrial power plants calculations with good results. In the first step of the validation process, assumptions were made about the live steam temperature and pressure, net power, characteristic quantities for high- and low-pressure regenerative heat exchangers and pressure losses in heat exchangers. These assumptions were then used to develop a steam cycle model in Gate-Cycle and a model based on the code developed in-house at the Institute of Power Engineering and Turbomachinery. Properties, such as thermodynamic parameters at characteristic points of the steam cycle, net power values and efficiencies, heat provided to the steam cycle and heat taken from the steam cycle, were compared. The last step of the analysis was calculation of relative errors of compared values. The method used for relative error calculations is presented in the paper. The assigned relative errors are very slight, generally not exceeding 0.1%. Based on our analysis, it can be concluded that using the GateCycle software for calculations of supercritical power plants is possible.
Go to article

Authors and Affiliations

Janusz Kotowicz
Henryk Łukowicz
Łukasz Bartela
Sebastian Michalski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a thermodynamic optimization of supercritical coal fired power plant. The aim of the study was to optimize part of the thermal cycle consisted of high-pressure turbine and two chosen highpressure feed water heaters. Calculations were carried out using IPSEpro software combined with MATLAB, where thermal efficiency and gross power generation efficiency were chosen as objective functions. It was shown that the optimization with newly developed framework is sufficiently precise and its main advantage is the reduction of computation time on comparison to the classical method. The calculations have shown the tendency of the increase in efficiency, with the rise of a number of function variables.
Go to article

Authors and Affiliations

Witold Elsner
Łukasz Kowalczyk
Maciej Marek
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented is an idea of organic Rankine cycle (ORC) operating with supercritical parameters and so called dry fluids. Discussed is one of the methods of improving the effectiveness of operation of supercritical cycle by application of internal regeneration of heat through the use of additional heat exchanger. The main objective of internal regenerator is to recover heat from the vapour leaving the turbine and its transfer to the liquid phase of working fluid after the circulation pump. In effect of application of the regenerative heat exchanger it is possible to obtain improved effectiveness of operation of the power plant, however, only in the case when the ORC plant is supplied from the so called sealed heat source. In the present paper presented is the discussion of heat sources and on the base of the case study of two heat sources, namely the rate of heat of thermal oil from the boiler and the rate of heat of hot air from the cooler of the clinkier from the cement production line having the same initial temperature of 260 oC, presented is the influence of the heat source on the justification of application of internal regeneration. In the paper presented are the calculations for the supercritical ORC power plant with R365mfc as a working fluid, accomplished has been exergy changes and exergy efficiency analysis with the view to select the most appropriate parameters of operation of the power plant for given parameters of the heat source.
Go to article

Authors and Affiliations

Aleksandra Borsukiewicz-Gozdur
Download PDF Download RIS Download Bibtex

Abstract

The objective of the paper is to analyse thermodynamical and operational parameters of the supercritical power plant with reference conditions as well as following the introduction of the hybrid system incorporating ORC. In ORC the upper heat source is a stream of hot water from the system of heat recovery having temperature of 90 °C, which is additionally aided by heat from the bleeds of the steam turbine. Thermodynamical analysis of the supercritical plant with and without incorporation of ORC was accomplished using computational flow mechanics numerical codes. Investigated were six working fluids such as propane, isobutane, pentane, ethanol, R236ea and R245fa. In the course of calculations determined were primarily the increase of the unit power and efficiency for the reference case and that with the ORC.

Go to article

Authors and Affiliations

Dariusz Mikielewicz
Jarosław Mikielewicz
Paweł Ziółkowski
Download PDF Download RIS Download Bibtex

Abstract

In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C). The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95%) were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.

Go to article

Authors and Affiliations

Janusz Kotowicz
Sebastian Michalski
Adrian Balicki

This page uses 'cookies'. Learn more