Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In a dynamic machining process, distortion in surface irregularity is a very complex phenomenon. Surface irregularities form a periodic representation of the tool profile with various kinds of disturbance in a broad range of changes in the height and length of the profile. To discern these irregularity disturbances, interactions of the tool in the form of changes perpendicular and parallel relative to the workpiece were analyzed and simulated. The individual kinds of displacement of the tool relative to the workpiece introduce distortions in the changes of height and length. These changes are weakly represented in standard height and length irregularity parameters and their discernment has been found through amplitude-frequency functions.

Go to article

Authors and Affiliations

Adam Boryczko
Wojciech Rytlewski
Download PDF Download RIS Download Bibtex

Abstract

This study proposes a surface profile and roughness measurement system for a fibre-optic interconnect based on optical interferometry. On the principle of Fizeau interferometer, an interference fringe is formed on the fibre end-face of the fibre-optic interconnect, and the fringe pattern is analysed using the Fast Fourier transform method to reconstruct the surface profile. However, as the obtained surface profile contains some amount of tilt, a rule for estimating this tilt value is developed in this paper. The actual fibre end-face surface profile is obtained by subtracting the estimated tilt amount from the surface profile, as calculated by the Fast Fourier transform method, and the corresponding surface roughness can be determined. The proposed system is characterized by non-contact measurement, and the sample is not coated with a reflector during measurement. According to the experimental results, the difference between the roughness measurement result of an Atomic Force Microscope (AFM) and the measurement result of this system is less than 3 nm.

Go to article

Authors and Affiliations

Chern S. Lin
Shih W. Yang
Hung L. Lin
Jhih W. Li
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses changes in the microstructure and abrasive wear resistance of G17CrMo5-5 cast steel modified with rare earth metals

(REM). The changes were assessed using scanning microscopy. The wear response was determined in the Miller test to ASTM G75.

Abrasion tests were supplemented with the surface profile measurements of non-modified and modified cast steel using a Talysurf CCI

optical profilometer. It was demonstrated that the modification substantially affected the microstructure of the alloy, leading to grain size

reduction and changed morphology of non-metallic inclusions. The observed changes in the microstructure resulted in a three times higher

impact strength (from 33 to 99 kJ/cm2

) and more than two times higher resistance to cracking (from 116 to 250 MPa). The following

surface parameters were computed: Sa: Arithmetic mean deviation of the surface, Sq: Root-mean-square deviation of the surface, Sp:

Maximum height of the peak

Sv: Maximum depth of the valley, Sz: Ten Point Average, Ssk: Asymmetry of the surface, Sku: Kurtosis of the surface. The findings also

indicated that the addition of rare earth metals had a positive effect on the abrasion behaviour of G17CrMo5-5 cast steel.

Go to article

Authors and Affiliations

B. Kalandyk
J. Kasińska

This page uses 'cookies'. Learn more