Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of experimental drum granulation of silica flour with the use of wetting liquids with different values of surface tension. Additionally, different liquid jet breakup and different residual moisture of the bed were applied in the tests. The process was conducted periodically in two stages: wetting and proper granulation, during which no liquid was supplied to the bed. The condition of the granulated material after the period of wetting (particle size distribution and moisture of separate fractions) and a change in the particle size distribution during the further conduct of the process (granulation kinetics) were determined.

Go to article

Authors and Affiliations

Michał Błaszczyk
Andrzej Heim
Tomasz P. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

Measurements of dynamic surface tension were carried out in aqueous systems (water or 0.1 mM Triton X-100) comprising nanoparticles formed from chemically modified polyaldehyde dextran (PAD). The nanostructures, considered as potential drug carriers in aerosol therapy, were obtained from biocompatible polysaccharides by successive oxidation and reactive coiling in an aqueous solution. The dynamic surface tension of the samples was determined by the maximum bubble pressure (MBP) method and by the axisymmetric drop shape analysis (ADSA). Experiments with harmonic area perturbations were also carried out in order to determine surface dilatational viscoelasticity. PAD showed a remarkable surface activity. Ward-Tordai equation was used to determine the equilibrium surface tension and diffusion coefficient of PAD nanoparticles (D = 2.3×10-6 m2/s). In a mixture with Triton X-100, PAD particles showed co-adsorption and synergic effect in surface tension reduction at short times (below 10 s). Tested nanoparticles had impact on surface rheology in a mixed system with nonionic surfactant, suggesting their possible interactions with the lung surfactant system after inhalation. This preliminary investigation sets the methodological approach for further research related to the influence of inhaled PAD nanoparticles on the lung surfactant and mass transfer processes in the respiratory system.

Go to article

Authors and Affiliations

Katarzyna Jabłczyńska
Tomasz R. Sosnowski
Download PDF Download RIS Download Bibtex

Abstract

The production process of prosthetic restorations runs in two stages. In the first stage, the prosthetic foundation is produced of metal

alloys. In the second stage, a facing material is applied on the produced element. In both stages, the wettability is significantly important,

as well as the free surface energy relating to it. The quality of the obtained cast depends on the surface phenomena occurring between the

metal alloy and the material of which the casting mould is made. The performed examinations also point to a relation between the ceramics

joint and the base, depending on the wetting angle.

The aim of the presented paper was to examine influence of the composition of a Ti(C,N)-type coating on bases made of the Ni-Cr

prosthetic alloy on the wettability and the surface free energy.

The test material were disks made of the Ni-Cr alloy with the diameter of 8 mm. The disks were divided into five groups, which were

covered with Ti(C,N) coatings, with different amounts of C and N in the layer. In order to determine the surface free energy (����), the

wetting angle was measured. Two measure liquids were applied: distilled water and diiodomethane.

The obtained results of the measurements of the water-wetting angles suggest that together with the increase of the ratio of nitrogen to

carbon in the Ti(C,N) coating, the surface hydrophobicity increases as well. In all the samples, one can see a large difference between the

energy values of the polar and the apolar components. The high values of the polar components and the low values of the apolar ones make

it possible to conclude that these surfaces exhibit a greater affinity to the polar groups than to the apolar ones.

On the basis of the analysis of the surface free energy, one can state that covering the alloy with Ti(C,N)-type coatings should not decrease

the adhesion of the ceramics to the alloy, whereas TiC coatings should lead to the latter’s improvement. Due to their hydrophilicity, TiC

coatings should decrease the adhesion of bacteria to the surface and hinder the formation of a bacterial biofilm.

Go to article

Authors and Affiliations

K. Banaszek
L. Klimek
Download PDF Download RIS Download Bibtex

Abstract

Determination of the physico-chemical interactions between liquid and solid substances is a key technological factor in many industrial processes in metallurgy, electronics or the aviation industry, where technological processes are based on soldering/brazing technologies. Understanding of the bonding process, reactions between materials and their dynamics enables to make research on new materials and joining technologies, as well as to optimise and compare the existing ones. The paper focuses on a wetting force measurement method and its practical implementation in a laboratory stand – an integrated platform for automatic wetting force measurement at high temperatures. As an example of using the laboratory stand, an analysis of Ag addition to Cu-based brazes, including measurement of the wetting force and the wetting angle, is presented.

Go to article

Authors and Affiliations

Marcin Bąkała
Rafał Wojciechowski
Dominik Sankowski
Adam Rylski
Download PDF Download RIS Download Bibtex

Abstract

In agriculture, the mixing of pesticides in tanks is a common practice. However, it is necessary to previse possible physical-chemical implications of this practice, which may affect the efficiency of the treatments performed. Therefore, the objective of this study was to evaluate the effects of the addition of acaricide to insecticidal spray mixtures on the formation of spray droplets and the interaction with citrus leaves. The experimental design was totally randomized, in a (2 × 3 + 1) factorial scheme for seven treatments. Factor A corresponded to the spray mixture used (isolate or in the mixture). Factor B corresponded to the insecticides tested (lambda-cyhalothrin + thiamethoxam, phosmet, and imidacloprid) and the control consisted of a spray mixture with spirodiclofen only. Nine replications were performed for characterization of the spray droplet size spectrum and four replications for the analysis of the surface tension and the contact angle. The mixture of pesticides showed positive results in terms of application safety. The addition of acaricide to insecticide spray mixtures reduced the surface tension and contact angle of droplets on the adaxial surface of orange leaves. There was an increment in volume median diameter (VMD), a significant reduction in the volume of droplets with drift-sensitive size and improvement in the uniformity of droplet size. Therefore, the addition of acaricide to an insecticide spray mixture positively influenced spray droplet formation and the interaction with citrus leaves providing better coverage and droplet size fractions with an appropriate size for safe and efficient application.

Go to article

Authors and Affiliations

Jaqueline Franciosi Della Vechia
Renata Thaysa Santos
Fabiano Griesang
Cícero Mariano Santos
Marcelo Costa Ferreira
Daniel Junior Andrade
Download PDF Download RIS Download Bibtex

Abstract

This work presents results of investigations on biotrickling filtration of air polluted with cyclohexane co-treated in binary, ternary and quaternary volatile organic compounds (VOCs) mixtures, including vapors of hexane, toluene and ethanol. The removal of cyclohexane from a gas mixture depends on the physicochemical properties of the co-treated VOCs and the lower the hydrophobicity of the VOC, the higher the removal efficiency of cyclohexane. In this work, the performance of biotrickling filters treating VOCs mixtures is discussed based on surface tension of trickling liquid for the first time. A mixed natural – synthetic packing for biotrickling filters was utilized, showing promising performance and limited maintenance requirements. Maximum elimination capacity of about 95 g/(m 3·h) of cyclohexane was reached for the total VOCs inlet loading of about 450 g/(m 3·h). This work presents also a novel approach of combining biological air treatment with management of a spent trickling liquid in the perspective of circular economy assumptions. The waste liquid phase was applied to the plant cultivation, showing a potential for e.g. enhanced production of energetic biomass or polluted soil phytoremediation.
Go to article

Authors and Affiliations

Piotr Rybarczyk
1
ORCID: ORCID
Bartosz Szulczyński
1
ORCID: ORCID
Dominik Dobrzyniewski
1
ORCID: ORCID
Karolina Kucharska
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
Download PDF Download RIS Download Bibtex

Abstract

An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30XC. Isotherms of acoustic impedance Za, surface tension σ and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30XC. The results obtained in this study are novel and can be applied in food, and chemical industries.

Go to article

Authors and Affiliations

Piotr Kiełczyński
Stanisław Ptasznik
Marek Szalewski
Andrzej Balcerzak
Krzysztof Wieja
Aleksander J. Rostocki
Download PDF Download RIS Download Bibtex

Abstract

Innovative procedure of microalloying continuous cast aluminum strip, thickness 10 mm, by Be, Zr and Mn using 3C Pechiney technology (no. 39762, P-377/76), and modifying the existing parameters for strip casting and crystallization was implemented under industrial conditions with two randomly selected batches 2×8 tones, without previous selection of standardized quality of aluminum, purity Al 99.5%, obtained by electrolysis. The application of microalloying and overall structural modification of the technology resulted in obtaining nanoscale, ultra-thin, compact oxide high-gloss film with uniform surface of continuous cast strip, instead of the usual thick and porous oxide film. The outcome of microalloying the obtained equiaxed fine-grained nano/micro structure was avoiding anisotropic and dendritic microstructure of the strip, and improving deformation and plastic properties of modified continuous cast strip subjected to the technology of plastic treatment by rolling until the desired foil thickness of 9 μm was obtained. The invention of microalloying and structural modification, including multiplying effect of several components, directly or indirectly, changed numerous structurally-sensitive properties. The obtained nano/micro structure of crystal grains with equiaxed structure resulted in the synergy of undesirable <111> and inevitable <100> and <110> textures. Numerous properties were significantly enhanced: elastic modulus was improved, and intensive presence of cracks in warm forming condition was prevented due to rapid increase of the number of grains to 10000 grains/cm2 in as-cast state.
Go to article

Authors and Affiliations

M.M. Purenović
1
J.M. Purenović
2
J.Č. Baralić
2

  1. University of Niš, Faculty of Sciences and Mathematics, Serbian Academy of Inventors and Scientists, Serbia
  2. University of Kragujevac, Faculty of Technical Sciences Cacak, Department of Physics and Materials, Serbia
Download PDF Download RIS Download Bibtex

Abstract

Surface phenomena play a major role in metallurgical processes; their operation results, among others, from the surface tension of liquid oxidic systems. One of the methods of determining surface tension of oxidic systems is performing calculations with Butler’s method. Surface tension was calculated for two- and three-component liquid oxidic systems typical of metallurgical processes. The determined dependence of surface tension in FeO-SiO2 at temp. 1773 K and CaO-SiO2 at temp.1873 K showed that with the growing participation of SiO2 surface tension decreased. Analogous calculations were performed for three-component systems: CaO-Al2O3-SiO2 and MnO-Al2O3- SiO2. The results of calculations of surface tension were determined for temp. 1873 K and compared with the results obtained by T. Tanaka et al. [19]. In both cases the increase of Al2O3 content resulted in a growth of surface tension. The simulation results were higher than experimental result, as compared to the literature data.

Go to article

Authors and Affiliations

D. Kalisz

This page uses 'cookies'. Learn more