Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the method facilitating the diagnostics of dynamic faults in networks of interconnection in systems-on-chips. It shows how to reconstruct the erroneous test response sequence coming from the faulty connection based on the set of signatures obtained as a result of multiple compaction of this sequence in the MISR register with programmable feedback. The Chinese reminder theorem is used for this purpose. The article analyzes in detail the various hardware realizations of the discussed method. The testing time associated with each proposed solution was also estimated. Presented method can be used with any type of test sequence and test pattern generator. It is also easily scalable to any number of nets in the network of interconnections. Moreover, it supports finding a trade-off between area overhead and testing time.
Go to article

Authors and Affiliations

Tomasz Garbolino
Download PDF Download RIS Download Bibtex

Abstract

Biomass is one of the most frequently used sources of renewable energy. For centuries, wood has been used by people to heat their homes, and nowadays it is also used to generate electricity. The article discusses legal issues related to biomass, classification of biomass for energy purposes, quality parameters of selected ecological fuels, quality requirements for biomass, as well as biomass trade in the world. The article compares the quality requirements for biomass purchased by individual companies from the power sector (mainly dimensions, calorific value, moisture content, ash content, sulfur and chlorine). An analysis of the price of wood pellets on international markets, represented by the biomass stock exchanges: RBCN, EEX and BALTPOOL was also performed. The market analysis clearly shows that the international market for industrial pellets is dominated by intercontinental trade, which mainly concerns exchanges between the United States of America as a producer and Europe as a consumer. The largest amount of biomass is imported by the United Kingdom, mainly for its Drax biomass power plant, and this biomass comes from the USA and Canada. In addition to Great Britain, significant importers of wood pellets are the Netherlands, Belgium and Denmark. Judging by the interest of Polish energy companies in the purchase of biomass, also in Poland, the development of the biomass market should be expected.

Go to article

Authors and Affiliations

Tadeusz Olkuski
Katarzyna Stala-Szlugaj
Download PDF Download RIS Download Bibtex

Abstract

The clock synchronization is considered as a key technology in the time-sensitive networking (TSN) of 5G fronthaul. This paper proposes a clock synchronization enhancement method to optimize the link delays, in order to improve synchronization accuracy. First, all the synchronization dates are filtered twice to get the good calculation results in the processor, and then FPGA adjust the timer on the slave side to complete clock synchronization. This method is implemented by Xilinx Zynq UltraScale+ MPSoC (multiprocessor system-on-chip), using FPGA+ARM software and hardware co-design platform. The master and slave output Pulse Per-Second signals (PPS). The synchronization accuracy was evaluated by measuring the time offset between PPS signals. Contraposing the TSN, this paper compares the performance of the proposed scheme with some previous methods to show the efficacy of the proposed work. The results show that the slave clock of proposed method is synchronized with the master clock, leading to better robustness and significant improvement in accuracy, with time offset within the range of 40 nanoseconds. This method can be applied to the time synchronization of the 5G open fronthaul network and meets some special service needs in 5G communication.
Go to article

Bibliography

1] M. Dong, Z. Qiu, W. Pan, C. Chen, J. Zhang and D. Zhang, "The Design and Implementation of IEEE 1588v2 Clock Synchronization System by Generating Hardware Timestamps in MAC Layer," 2018 International Conference on Computer, Information and Telecommunication Systems (CITS), Colmar, 2018, pp. 1-5.
[2] Chavan A., Nagurvalli S., Jain M., Chaudhari S. (2018) Implementation of FPGA-Based Network Synchronization Using IEEE 1588 Precision Time Protocol (PTP). In: Sa P., Bakshi S., Hatzilygeroudis I., Sahoo M. (eds) Recent Findings in Intelligent Computing Techniques. Advances in Intelligent Systems and Computing, vol 708. Springer, Singapore.
[3] R. Exel, T. Bigler and T. Sauter, "Asymmetry Mitigation in IEEE 802.3 Ethernet for High-Accuracy Clock Syn chronization," in IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 3, pp. 729- 736, March 2014.
[4] W. Tseng, S. Siu, S. Lin and C. Liao, "Precise UTC dissemination through future telecom synchronization networks," 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, Denver, CO, 2015, pp. 696-699.
[5] O. Ronen and M. Lipinski, "Enhanced synchronization accuracy in IEEE1588," 2015 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS), Beijing, 2015, pp. 76-81.
[6] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Sys tems," in IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) , vol., no., pp.1-300, 24 July 2008.
[7] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. 2018. Hardware Assisted Clock Synchronization with the IEEE 1588-2008 Precision Time Protocol. In Proceedings of the 26th International Conference on Real-Time Networks and Systems (RTNS ’18). Association for Computing Machinery, New York, NY, USA, 51–60.
[8] W.Jinqi, C.Hong, "Implementation of IEEE1588 Precision Clock Synchronization Protocol Based on ARM",2019,42(06):1527-1531.
[9] G. Giorgi and C. Narduzzi, "Performance Analysis of Kalman-Filter- Based Clock Synchronization in IEEE 1588 Networks," in IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 8, pp. 2902-2909, Aug. 2011.
[10] Lee S. An enhanced IEEE 1588 time synchronization algorithm for asymmetric communication link using block burst transmission[J]. IEEE communications letters, 2008, 12(9): 687-689.
[11] Chen, W., Sun, J., Zhang, L. et al. An implementation of IEEE 1588 protocol for IEEE 802.11 WLAN. Wireless Netw 21, 2069–2085 (2015).
[12] P. A. Crossley, H. Guo and Z. Ma, "Time synchronization for transmission substations using GPS and IEEE 1588," in CSEE Journal of Power and Energy Systems, vol. 2, no. 3, pp. 91-99, Sept. 2016.
[13] H. Guo and P. Crossley, "Design of a Time Synchronization System Based on GPS and IEEE 1588 for Transmission Substa tions," in IEEE Transactions on Power Delivery, vol. 32, no. 4, pp. 2091-2100, Aug. 2017.
[14] O. Seijo, I. Val, J. A. Lopez-Fernandez and M. Velez, "IEEE 1588 Clock Synchronization Performance over Time-Varying Wireless Channels," 2018 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS), Geneva, 2018, pp. 1-6.
[15] S. Lee and C. Hong, "An Accuracy Enhanced IEEE 1588 Synchronization Protocol for Dynamically Changing and Asymmetric Wireless Links," IEEE Communications Letters, vol. 16, no. 2, pp. 190-192, February 2012.
[16] The Linux PTP Project. [Online]. Available: http://linuxptp.sourceforge.net/, accessed Dec. 2015.
[17] N. Moreira, J. Lázaro, U. Bidarte, J. Jimenez, and A.Astarloa, "On the Utilization of System-on-Chip Platformsto Achieve Nanosecond Synchronization Accuracies in Substation Automation Systems."
Go to article

Authors and Affiliations

Xiaohan Wei
1
Xingzhong Wei
1
Zhongqiang Luo
1
Jianwu Wang
1
Kaixing Cheng
1

  1. School of Automation and Information Engineering and Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents material and technological studies on lab-on-chip (LOC) devices as a first step towards biocompatible and reliable research on microscopic fungi and soil organisms on a microscale. This approach is intended to respond to the growing need for environmental control and protection, by means of modern, miniaturized, portable and dependable microfluidics instrumentation. The authors have presented herein long-term, successful cultivation of different fungi representatives (with emphasis put on Cladosporium macrocarpum) in specially fabricated all-glass LOCs. Notable differences were noted in the development of these creatures on polymer, polydimethylosiloxane (PDMS) cultivation substrates, revealing the uncommon morphological character of the fungi mycelium. The utility of all-glass LOCs was verified for other fungi representatives as well –  Fusarium culmorum and Pencilium expansum, showing technical correspondence and biocompatibility of the devices. On that basis, other future applications of the solution are possible, covering, e.g. investigation of additional, environmentally relevant fungi species. Further development of the LOC instrumentation is also taken into consideration, which could be used for cultivation of other soil organisms and study of their mutual relationships within the integrated microfluidic device.
Go to article

Bibliography

  1.  C. Wagg, et al., “Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning”, Nat. Commun. 10, 4841 (2019), doi: 10.1038/s41467-019-12798-y.
  2.  M.J. Roossinck, “Evolutionary and ecological links between plant and fungal viruses”, New Phytol. 221(1), 86‒92 (2019), doi: 10.1111/ nph.15364, 2019.
  3.  H. Grossart, et al., “Fungi in aquatic ecosystems”, Nat. Rev. Microbiol. 17, 339–354 (2019), doi: 10.1038/s41579-019-0175-8.
  4.  M. Rai and G. Agarkar, “Plant–fungal interactions: What triggers the fungi to switch among lifestyles?”, Crit. Rev. Microbiol. 42(3), 428‒38 (2016), doi: 10.3109/1040841X.2014.958052.
  5.  A. Frew, J.R. Powell, G. Glauser, A.E. Bennett, and S.N. Johnson, “Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations”, Soil Biol. Biochem. 126, 123‒132 (2018), doi: 10.1016/j.soilbio.2018.08.019.
  6.  M. Dicke, A. Cusumano, and E.H. Poelman, “Microbial Symbionts of Parasitoids”, Annu. Rev. Entomol. 65, 171‒190 (2020).
  7.  B. Kendrick, The fifth kingdom. An Introduction to mycology. Hackett Publishing Company, Inc., Indianapolis, USA, 2017.
  8.  T.A. Richards, G. Leonard, and J.G. Wideman. “What Defines the “Kingdom” Fungi?” in The fungal Kingdom, Washington, DC: ASM Press, American Society for Microbiology, Wiley Online Library, 2018.
  9.  T.S. Kaminski, O. Scheler, and P. Garstecki, “Droplet microfluidics for microbiology: techniques, applications and challenges”, Lab Chip 16, 2168‒2187 (2016).
  10.  A. Burmeister and A. Grünberger, “Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures”, Curr. Opin. Biotechnol. 62, 106‒115 (2020).
  11.  C.E. Stanley and M.G.A. van der Heijden, “Microbiome-on-a-Chip: New Frontiers in Plant–Microbiota Research”, Trends Microbiol. 25(8), 610‒613, 2017.
  12.  S.R. Lockery, et al., “Artificial Dirt: Microfluidic Substrates for Nematode Neurobiology and Behavior”, J. Neurophysiol 99(6), 3136‒3143, 2008.
  13.  H. Massalha, E. Korenblum, S. Malitsky, O.H. Shapiro, and A. Aharoni, “Live imaging of root–bacteria interactions in a microfluidics setup”, PNAS 114(17), 4549‒4554 (2017).
  14.  C.S. Effenhauser, A. Paulus, A. Manz, and H.M. Widmer, “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device”, Anal. Chem. 66, 1994(18), 2949–2953 (1994).
  15.  L.J. Golonka, “Technology and applications of Low Temperature Cofired Ceramic (LTCC) based sensors and microsystems”, Bull. Pol. Ac.: Tech. 54(2), 221‒231 (2006).
  16.  M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: A review”, Lab Chip 16(17), 3177‒3192 (2016).
  17.  G.M. Whitesides, “The origins and the future of microfluidics”, Nature 442, 368–373 (2006).
  18.  B. Zhang, M. Kim, T. Thorsen, and Z. Wang, “A self-contained microfluidic cell culture system”, Biomed. Microdevices 11(6), 1233‒1237 (2009).
  19.  S. Ye and I.N.M. Day, Microarrays & microplates: applications in biomedical sciences, 1st Edition, Garland Science, New York, USA, 2002.
  20.  R.J. Courcol, H. Deleersnyder, M. Roussel-Delvallez, and G.R. Martin, “Automated reading of a microtitre plate: preliminary evaluation in antimicrobial susceptibility tests and Enterobacteriaceae identification”, J. Clin. Pathol. 36(3), 341–344 (1983).
  21.  J.H. Platt, A.B. Shore, A.M. Smithyman, and G.L. Kampfner, “A computerised ELISA system for the determination of total and antigen- specific immunoglobulins in serum and secretions”, J. Immunoassay Immunochem. 2, 59‒74 (2006).
  22.  L. Maresová and H. Sychrova, “Applications of a microplate reader in yeast physiology research”, BioTechniques 43(5), 667‒672, 2007.
  23.  M. Frąc, A. Gryta, K. Oszust and N. Kotowicz, “Fast and accurate microplate method (Biolog MT2) for detection of Fusarium fungicides resistance/sensitivity”, Front. Microbiol. 7, 489 (2016).
  24.  C.E. Stanley, G. Grossmann, X. Casadevall i Solvas, and A.J. deMello, “Soil-on-a-Chip: microfluidic platforms for environmental organismal studies”, Lab Chip 16 (2), 228‒241 (2016).
  25.  A. Sanati Nezhad, “Microfluidic platforms for plant cells studies”, Lab Chip 14(17), 3262‒3274 (2014).
  26.  J.C. Jokerst and J.M. Emory, C.S. Henry, “Advances in microf luidics for environmental analysis”, Analyst 137(1), 24‒34 (2012).
  27.  D.W. Inglis, N. Herman, and G. Vesey, “Highly accurate deterministic lateral displacement device and its application to purification of fungal spores”, Biomicrofluidics 24(2), 024109 (2010).
  28.  Z. Palková, L. Váchová, M. Valer, and T. Preckel, “Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system”, Cytometry A 59, 246‒253 (2004).
  29.  M. Held, C. Edwards, and D.V. Nicolau, “Examining the behaviour of fungal cells in microconfined mazelike structures”, in Proc. SPIE 6859, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI, 2008.
  30.  M. Held, O. Kašpar, C. Edwards, and D.V. Nicolau, “Intracellular mechanisms of fungal space searching in microenvironments”, PNAS 116, 13543‒13552 (2019).
  31.  E. Berthier, E.W. Young, and D. Beebe, “Engineers are from PDMS-land, Biologists are from Polystyrenia”, Lab Chip 12(7), 1224‒1237 (2012).
  32.  D. Stadnik, M. Chudy, Z. Brzózka, and A. Dybko, “Spectrophotometric analysis using poly (dimethylsiloxane) microfluidic detectors”, Bull. Pol. Ac.: Tech. 53(2), 163‒165 (2005).
  33.  X. Che, J. Boldrey, X. Zhong, S. Unnikandam-Veettil, I. Schneider, D. Jiles, and L. Que, “On-Chip Studies of Magnetic Stimulation Effect on Single Neural Cell Viability and Proliferation on Glass and Nanoporous Surfaces”, ACS Appl. Mater. Interfaces 10 (34), 28269‒28278 (2018).
  34.  C. Iliescu, F. Tay, and J. Miao, “Strategies in deep wet etching of Pyrex glass”, Sens. Actuator A Phys. 133, 395‒400 (2007).
  35.  R. Ma, Q. Chen, Y. Fan, Q. Wang, S. Chen, X. Liu, L. Cai, and B. Yao, “Six new soil–inhabiting Cladosporium species from plateaus in China”, Mycologia 109(2), 244‒260 (2017).
  36.  I. Ghiaie Asl, M. Motamedi, G.R. Shokuhi, N. Jalalizand, A. Farhang, and H. Mirhendi, “Molecular characterization of environmental Cladosporium species isolated from Iran.” Curr. Med. Mycol 3(1), 1–5 (2017).
  37.  T. Watanabe, Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species, CRC Press, Washington, USA (2011).
  38.  K.H. Domsch, W. Gams, and T.H. Anderson. Compendium of Soil Fungi, T: 1, Academic Press, London, UK, 1980.
  39.  J.C. Gilman, A manual of soil fungi, Ed. 2, Iowa State College Press, Ames, USA, 1957.
  40.  W. Pusz, K. Patejuk, and A. Kaczmarek, “Fungi colonizing of small balsam seeds (Impatiens parviflora DC.) seeds in Wigry National Park”, Prog. Plant Prot. 60, 33‒40 (2020).
  41.  B. Jacewski, J. Urbaniak, P. Kwiatkowski, and W. Pusz, “Microfungal diversity of Juncus trifidus L. and Salix herbacea L. at isolated locations in the Sudetes and Carpathian Mountains”, Acta Mycol. 54(1), 1118 (2019).
  42.  E. Levetin and K. Dorseys, “Contribution to leaf surface fungi to the air spora.” Aerobiologia 22, 3‒12 (2006).
  43.  S.N. Stohr and J. Dighton, “Effects of species diversity on establishment and coexistence: A phylloplane fungal community model system”, Microb. Ecol. 48, 431‒438 (2004).
  44.  E.M. El-Morsy, “Fungi isolated from the endorhizosphere of halophytic plants from the Red Sea Coast of Egypt”, Fungal Divers. 5, 43‒54 (2000).
  45.  K. Bensch, U. Braun, J.Z. Groenewald, and P.W. Crous, “The genus Cladosporium”, Stud. Mycol. 72, 1‒401 (2012).
  46.  M.B. Ellis, Dematiaceous Hyphomycetes, Commonwealth Mycological Institute, Kew, Surrey, UK, 1971.
  47.  R. Ogórek, A. Lejman, W. Pusz, A. Miłuch, and P. Miodyńska, “Characteristics and taxonomy of Cladosporium fungi”, Med. Mycol. J. 19(2), 80‒85 (2012).
  48.  S. Sharma, R.C. Sharma, and R. Malhotra, “Effect of the Saprophytic Fungi Alternaria alternata and Cladosporium oxysporum on Germination, Parasitism and Viability of Melampsora ciliata Urediniospores”, J. Plant. Dis. Prot. 109(3), 291‒300 (2002).
  49.  W. Pusz, R. Weber, A. Dancewicz, and W. Kita, “Analysis of selected fungi variation and its dependence on season and mountain range in southern Poland – key factors in drawing up trial guidelines for aeromycological monitoring”, Environ. Monit. Assess. 189(10), 526 (2017).
  50.  W. Pusz, W. Kita, A. Dancewicz, and R. Weber, “Airborne fungal spores of subalpine zone of the Karkonosze and Izerskie Mountains (Poland)”, J. Mt. Sci. 10(10), 940–952 (2013).
  51.  W. Pusz, M. Król, and T. Zwijacz-Kozica, “Airborne fungi as indicators of ecosystem disturbance: an example from selected Tatra Mountains caves (Poland)”, Aerobiologia 34, 111‒118 (2018).
  52.  E. Porca, V. Jurado, P.M. Martin-Sanchez, B. Hermosin, F. Bastian, C. Alabouvette, and C. Saiz-Jimenez, “Aerobiology: An ecological indicator for early detection and control of fungal outbreaks in caves”, Ecol. Indic. 11(6), 1594‒1598 (2011).
  53.  P. Gutarowska, “Moulds in biodeterioration of technical materials”, Folia Biologica et Oecologica 10, 27‒39 (2014).
  54.  B. Zyska and Z. Żakowska. Mikrobiologia materiałów, Politechnika Łódzka, Łódź, 2005.
  55.  T.J. Berryman. “Fuel Quality and demand – an overview” in Microbiology of fuels, Ed. R.N. Smith, Institute of Petroleum, London, UK, 1987.
  56.  K. Schubert, J.Z. Groenewald, U. Braun, J. Dijksterhuis, M. Starink, C.F. Hill, P. Zalar, G.S. de Hoog, and P.W. Crous, “Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics”, Stud. Mycol. 58, 105‒156 (2007).
  57.  J. Israel Martínez-López, M. Mojica, C.A. Rodríguez, and H.R. Siller, “Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers”, Sensors (Basel) 16(5), 705 (2016).
  58.  D. Witkowski, W. Kubicki, J.A. Dziuban, D. Jašíková, and A. Karczemska, “Micro-particle image velocimetry for imaging flows in passive microfluidic mixers”, Bull. Pol. Ac.: Tech. 25(3), 441–450 (2018).
  59.  A. Lamberti, S.L. Marasso, and M. Cocuzza, “PDMS membranes with tunable gas permeability for microfluidic applications”, RSC Adv. 4, 61415–61419 (2014).
  60.  K. Kamei, Y. Mashimo, and Y. Koyama, “3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients”, Biomed. Microdev. 17(2), 36 (2015).
  61.  P. Thurgood, S. Baratchi, C. Szydzik, A. Mitchella, and K. Khoshmanesh, “Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments”, Lab Chip 17, 2517‒2527 (2017).
  62.  A. Podwin, R. Walczak, and J.A. Dziuban, “A 3D printed membrane-based gas microflow regulator for on-chip cell culture”, Appl. Sci. 8(4), 579 (2018).
  63.  A. Podwin and J.A. Dziuban, “Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms”, J. Micromech. Microeng. 27(10), 104004 (2017).
  64.  A. Podwin, W. Kubicki, K. Adamski, R. Walczak, and J.A. Dziuban, “A step towards on-chip biochemical energy cascade of microorganisms: Carbon dioxide generation induced by ethanol fermentation in 3D printed modular lab-on-a-chip”, J. Phys.: Conf. Ser. 773(1), 012052 (2016).
  65.  K. Ozasa, J. Lee, S. Song, M. Hara, and M. Maeda, “Gas/liquid sensing via chemotaxis of euglena cells confined in an isolated micro- aquarium”, Lab Chip 13, 4033‒4039 (2013).
  66.  F.J.H. Hol and C. Dekker, “Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria”, Science 346 (6208), 1251821 (2014).
  67.  K. Nagy, Á. Ábrahám, J.E. Keymer, and P. Galajda, “Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial”, Front. Microbiol. 9, 496 (2018)
  68.  A. Podwin, W. Kubicki, and J.A. Dziuban, “Study of the behavior of Euglena viridis, Euglena gracilis and Lepadella patella cultured in all-glass microaquarium”, Biomed. Microdev. 19(3), 63 (2017).
  69.  R. Walczak, P. Śniadek, J.A. Dziuban, J. Kluger, and A. Chełmońska-Soyta, “Supravital fluorometric apoptosis detection in a single mouse embryo using lab-on-a-chip”, Lab Chip 11, 3263‒3268 (2011).
  70.  A. Podwin, D. Lizanets, D. Przystupski, W. Kubicki, P. Śniadek, J. Kulbacka, A. Wymysłowski, R. Walczak, and J.A. Dziuban, “Lab-on- Chip Platform for Culturing and Dynamic Evaluation of Cells Development”, Micromachines 11(2), 196 (2020).
  71.  W. Wei, et al., “A numerical model for air concentration distribution in self-aerated open channel flows”, J. Hydrodynam. B. 27(3), 394‒402 (2015).
  72.  S. Agaoglu, et al., “The effect of pre-polymer/cross-linker storage on the elasticity and reliability of PDMS microfluidic devices”, Microfluid. Nanofluidics 21, 117 (2017).
Go to article

Authors and Affiliations

Agnieszka Podwin
1
Tymon Janisz
1
Katarzyna Patejuk
2
Piotr Szyszka
1
Rafał Walczak
1
Jan Dziuban
1

  1. Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
  2. Wrocław University of Environmental and Life Sciences, Department of Plant Protection, Grunwaldzki Sq. 24a, 50-363 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of a simulation on a 3D model of undeformed chips and cutting forces during three-pass gear cutting using the power skiving method. At the level of individual blades and teeth in successive angular cutting positions, the main component of the cutting force and the tangential force on the cutter axis are shown. The analysis of the forces acting on a single gear tooth and the continuous cutting forces allowed the development of a methodology for the selection of rational cutting modes – the value of the axial feed, the number of passes with different cutting depths in order to ensure the minimum time consumption and to achieve the required accuracy of the gears in terms of the parameter of the permissible angular deviation of the profile of the cut gear. It is shown that, provided the required machining accuracy is ensured, higher productivity is achieved by increasing the axial feed at a lower depth of cut and increasing the number of passes, rather than by reducing the feed and increasing the depth of cut.
Go to article

Authors and Affiliations

Ihor Hrytsay
1
ORCID: ORCID
Andrii Slipchuk
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This work investigates the compaction behaviour of commercial pure aluminium chips (CP Al) produced during a machining operation and subsequently consolidated by Equal Channel Angular Pressing (ECAP). Empirical models were developed to describe the relative density and hardness of the compacted product of ECAP as functions of the initial machining input parameters including cutting edge angle (CA), depth of cut (DOC) and then the number of consolidation pass during ECAP. The models were developed utilizing response surface methodology (RSM) based on data from a central composite face centred factorial design of experiments approach. The models were then validated by using Analysis of Variance (ANOVA). The effect of input parameters on the relative density and hardness of the ECAP consolidated samples are presented and discussed including details as regards to the mechanical and microstructural properties. An optimum set of input parameters are identified and presented where the best relative density and hardness are demonstrated.
Go to article

Authors and Affiliations

R. Palanivel
1
ORCID: ORCID
S. Vigneshwaran
2
ORCID: ORCID
A. Alshqirate
3
ORCID: ORCID
R. Madhavan
2
ORCID: ORCID
P. Venkatachalam
4
R.F. Laubscher
5
ORCID: ORCID

  1. Shaqra University, Department of Mechanical Engineering, Saudi Arabia, 11911
  2. National Institute of Technology, Department of Mechanical Engineering, Puducherry, Karaikal – 609 609, India
  3. Department of Mechanical Engineering, Faculty of Engineering Technology, Al-Balqa Applied University, Jordan 19117
  4. Department of Mechanical Engineering, MVJ College of Engineering, Bengaluru – 560 067, Karnataka, India
  5. Department of Mechanical Science & Engineering, University of Johannesburg, South Africa
Download PDF Download RIS Download Bibtex

Abstract

The objective of the study was to assess the potential use of optical measuring instruments to determine the minimum chip thickness in face milling. Images of scanned surfaces were analyzed using mother wavelets. Filtration of optical signals helped identify the characteristic zones observed on the workpiece surface at the beginning of the cutting process. The measurement data were analyzed statistically. The results were then used to estimate how accurate each measuring system was to determine the minimum uncut chip thickness. Also, experimental verification was carried out for each mother wavelet to assess their suitability for analyzing surface images.

Go to article

Authors and Affiliations

Damian Gogolewski
Włodzimierz Makieła
Łukasz Nowakowski
Download PDF Download RIS Download Bibtex

Abstract

Production waste is one of the major sources of aluminium for recycling. Depending on the waste sources, it can be directly melted in furnaces, pre-cleaned and then melted, or due to the small size of the material (powder or dust) left without remelting. The latter form of waste includes chips formed during mechanical cutting (sawing) of aluminium and its alloys. In this study, this type of chips (with the dimensions not exceeding 1 mm) were melted. The obtained results of laboratory tests have indicated that even chips of such small sizes pressed into cylindrical compacts can be remelted. The high recovery yield (up to 94 %) and degree of metal coalescence (up to 100 %) were achieved via thermal removal of impurities under controlled conditions of a gas atmosphere (argon or/and air), followed with consolidation of chips at a pressure of minimum 170 MPa and melting at 750 oC with NaCl-KCl-Na3AlF6 salt flux.

Go to article

Authors and Affiliations

P. Palimąka
Download PDF Download RIS Download Bibtex

Abstract

Aluminum casting alloys are widely used in especially automotive, aerospace, and other industrial applications due to providing desired mechanical characteristics and their high specific strength properties. Along with the increase of application areas, the importance of recycling in aluminum alloys is also increasing. The amount of energy required for producing primary ingots is about ten times the amount of energy required for the production of recycled ingots. The large energy savings achieved by using the recycled ingots results in a significant reduction in the amount of greenhouse gas released to nature compared to primary ingot production. Production can be made by adding a certain amount of recycled ingot to the primary ingot so that the desired mechanical properties remain within the boundary conditions. In this study, by using the A356 alloy and chips with five different quantities (100% primary ingots, 30% recycled ingots + 70% primary ingots, 50% recycled ingots + 50% primary ingots, 70% recycled ingots + 30% primary ingots, 100% recycled ingots), the effect on mechanical properties has been examined and the maximum amount of chips that can be used in production has been determined. T6 heat treatment was applied to the samples obtained by the gravity casting method and the mechanical properties were compared depending on the amount of chips. Besides, microstructural examinations were carried out with optical microscopy techniques. As a result, it has been observed that while producing from primary ingots, adding 30% recycled ingot to the alloy composition improves the mechanical properties of the alloy such as yield strength and tensile strength to a certain extent. However, generally a downward pattern was observed with increasing recycled ingot amount.
Go to article

Bibliography

[1] Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., Smet, P. De., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280, 37-49. DOI: 10.1016/S0921-5093(99)00653-X
[2] Cagan, S.C., Venkatesh, B. & Buldum, B.B. (2020). Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Materials Today: Proceedings. 27, 1122-1126. DOI: 10.1016/j.matpr.2020.01.547
[3] Naumova, E.A., Belov, N.A. & Bazlova, T.A. (2015). Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg. Metal Science and Heat Treatment. 57, 5-6. DOI: 10.1007/s11041-015-9874-6
[4] Krolo, J., Gudić, S., Vrsalović, L., Branimir, L., Zvonimir, D. (2020). Fatigue and corrosion behavior of solid-state recycled aluminum alloy EN AW 6082. Journal of Materials Engineering and Performance. 29(7), 4310-4321. DOI: 10.1007/s11665-020-04975-8
[5] TMMOB Metalurji Mühendisleri Odası, Alüminyum Komisyonu, Alüminyum Raporu.
[6] Dhindaw, B.K., Aditya, G.S.L. & Mandal, A. (2020). Recycling and downstream processing of aluminium alloys for automotive applications. In Saleem Hashmi and Imtiaz Ahmed Choudhury (Eds.), Encyclopedia of Renewable and Sustainable Materials. 3 (pp.154-161). Elsevier Inc.
[7] Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., Thonstad, J. (1982). Aluminium electrolysis: Fundamentals of the Hall-Heroult Process. 2nd Edition. University of California.
[8] Peng, T., Ou, X., Yan, X. & Wang, G. (2019). Life-cycle analysis of energy consumption and GHG emissions of aluminium production in China. Energy Procedia. 158, 3937- 3943. DOI: 10.1016/j.egypro.2019.01.849
[9] Prasada Rao, A. K. (2011). An approach for predicting the composition of a recycled Al-Alloy. Transactions of the Indian Institute of Metals. 64, 615-617. DOI: 10.1007/s12666-011-0084-7
[10] Capuzzi, S. & Timelli, G. (2018). Preparation and melting of scrap in aluminum recycling: A Review. Metals. 8(4), 249. DOI: 10.3390/met8040249
[11] Khalid, S.N.A.B. (2013). Mechanical strength of ascompacted aluminium alloy waste chips. Malaysia: MSc Thesis, Universiti Tun Hussein Onn Malaysia.
[12] Bjurenstedt, A. (2017). On the influence of imperfections on microstructure and properties of recycled Al-Si casting alloys. Sweden: PhD. Thesis, Jönköping University Jönköping.
[13] Bogdanoff, T., Seifeddine, S. & Dahle, A. K. (2016). The effect of Si content on microstructure and mechanical properties of Al-Si alloy. La Metallurgia Italiana. 108(6), 65- 69.
[14] Wang, Y., Liao, H., Wu, Y. & Yang, J. (2014). Effect of Si content on microstructure and mechanical properties of Al– Si–Mg alloys. Materials & Design. 53, 634-638.
[15] Ozaydin, O. & Kaya, A. (2019). Influence of different Si levels on mechanical properties of aluminium casting alloys. European Journal of Engineering And Natural Sciences. 3(2), 165-172.
[16] Zhang, X., Ahmmed, K., Wang, M. & Hu, H. (2012). Influence of aging temperatures and times on mechanical properties of vacuum high pressure die cast aluminum alloy A356. Advanced Materials Research. 445, 277-282. DOI: 10.4028/www.scientific.net/AMR.445.277
[17] Ozaydin, O., Dokumaci, E., Armakan, E., Kaya, A. (2019). The effects of artificial ageing conditions on a356 aluminum cast alloys. In ECHT 2019 - European Conference on Heat Treatment. Bardolino, Italy.
[18] Peng, J., Tang, X., He, J. & Xu, D. (2011). Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonferous Met. Soc. Chinea. 21, 1950-1956. DOI: 10.1016/S1003-6326(11)60955-2
[19] Wang, L., Makhlouf, M. & Apelian, D. (2013). Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. International Materials Reviews. 40(6), 221-238. DOI: 10.1179/imr.1995.40.6.221
[20] Yuksel, C.K., Tamer, O., Erzi, E., Aybarc, U., Cubuklusu, E., Topcuoglu, O., Cigdem, M. & Dispinar, D. (2016). Quality evaluation of remelted A356 scraps. Archives of Foundry Engineering. 16(3), 151-156. DOI: 10.1515/afe-2016-0069
[21] Hu, M., Ji, Z., Chen, X. & Zhang, Z. (2007). Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Materials Characterization. 59(4), 385-389. DOI: 10.1016/j.matchar.2007.02.002
[22] Testing Of Metallic Materials – Tensile Test Pieces, Prüfung Metallischer Werkstoffe – Zugproben Deutsche Norm DIN 50125, 2016.
[23] Metallic Materials - Tensile Testing - Part 1:Method Of Test at Room Temperature, PN-EN ISO 6892-1: 2020-05
[24] Taylor J.A. (2012). Iron-containing intermetallic phases in AlSi based casting alloys. Procedia Materials Science. 1, 19-33. DOI: 10.1016/j.mspro.2012.06.004
[25] Eisaabadi, G.B., Davami, P., Kim, S.K., Varahram, N., Yoon, Y.O. & Yeom, G.Y. (2012). Effect of oxide films, inclusions and Fe on reproducibility of tensile properties in cast Al–Si– Mg alloys: Statistical and image analysis. Materials Science and Engineering: A 558, 134-143. DOI: 10.1016/j.msea.2012.07.101
[26] Schlesinger, M.E. (2013). Aluminum Recycling. CRC Press. 2nd Edition. CRC Press
[27] Dispinar, D., Akhtar, S., Nordmark, A., Sabatino, M. Di. & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A. 527(17), 3719-3725. DOI: 10.1016/j.msea.2010.01.088
[28] Akhtar, S., Dispinar, D., Arnberg, L. & Sabatino, M.Di. (2009). Effect of hydrogen content melt cleanliness and solidification conditions on tensile properties of A356 alloy. International Journal of Cast Metals Research. 22(4), 22-25. DOI: 10.1179/136404609X367245
[29] Bösch, D., Pogatscher, S., Hummel, M., Fragner, W., Uggowitzer, P.J., Göken, M. & Höppel, H.W. (2015). Secondary Al-Si-Mg high-pressure die casting alloys with enhanced ductility. Metallurgical and Materials Transactions A. 46(3), 1035-1045.
[30] Taylor, J.A. (2004). The effect of iron in Al-Si casting alloys. In 35th Australian Foundry Institute National Conference, 31 Oct - 3 Nov 2004 (148-157). Australia: Australian Foundry Institute (AFI).
[31] Campbell, J. (1993). Castings, 2nd Edition. Elsevier
Go to article

Authors and Affiliations

A.Y. Kaya
1
O. Özaydın
1
T. Yağcı
2
A. Korkmaz
2
E. Armakan
1
O. Çulha
2

  1. Cevher Alloy Wheels Co. / R&D Dept., İzmir, Turkey
  2. Manisa Celal Bayar University, Engineering Faculty, Dept. of Metallurgical and Materials Engineering, Manisa, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The Inconel 718 alloys, which are primarily temperature resistant, are widely used in aviation, aerospace and nuclear industries. The study on dry cutting processes for this alloy becomes difficult due to its high hardness and low thermal conductivity, wherein, most of the heat transfers due to friction are accumulated over the tool surface. Further, several challenges like increased cutting force, developing high temperature and rapid tool wear are observed during its machining process. To overcome these, the coated tool inserts are used for machining the superalloys. In the present work, the cemented carbide tool is coated with chemical vapor deposition multi-layering Al 2O 3/TiCN under the dry cutting environment. The machining processes are carried out with varying cutting speeds: 65, 81, 95, and 106 m/min, feed rate 0.1 mm/rev, and depth of cut 0.2 mm. The variation in the cutting speeds can attain high temperatures, which may activate built-up-edge development which leads to extensive tool wear. In this context, the detailed chip morphology and its detailed analysis are carried out initially to understand the machining performance. Simultaneously, the surface roughness of the machined surface is studied for a clear understanding of the machining process. The potential tool wear mechanism in terms of abrasion, adhesion, tool chip off, delaminating of coating, flank wear, and crater wear is extensively identified during the processes. From the results, it is observed that the machining process at 81 m/min corresponds to a better machining process in terms of lesser cutting force, lower cutting temperature, better surface finish, and reduced tool wear than the other machining processes.
Go to article

Bibliography

[1] R.M. Arunachalam, M.A. Mannan, and A.C. Spowage. Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. International Journal of Machine Tools and Manufacture, 44(14):1481–1491, 2004. doi: 10.1016/j.ijmachtools.2004.05.005.
[2] L. Li, N. He, M.Wang, and Z.G.Wang. High-speed cutting of Inconel 718 with coated carbide and ceramic inserts. Journal of Materials Processing Technology, 129(1–3):127–130, 2002. doi: 10.1016/S0924-0136(02)00590-3.
[3] E.O. Ezugwu. Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture, 45(12–13):1353–1367, 2005. doi: 10.1016/j.ijmachtools.2005.02.003.
[4] T. Kitagawa, A. Kubo, and K. Maekawa. Temperature and wear of cutting tools in high-speed machining of Inconel and Ti–6Al–6V–2Sn. Wear, 202(2):142–148, 1997. doi: 10.1016/S0043-1648(96)07255-9.
[5] S. Chinchanikar, S.S. Kore, and P. Hujare. A review on nanofluids in minimum quantity lubrication machining. Journal of Manufacturing Processes, 68(A):56–70, 2021. doi: 10.1016/j.jmapro.2021.05.028.
[6] A.C. Okafor and T.O. Nwoguh. Comparative evaluation of soybean oil–based MQL flow rates and emulsion flood cooling strategy in high-speed face milling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 107(9–10):3779–3793, 2020. doi: 10.1007/s00170-020-05248-3.
[7] J. Kaminski and B. Alvelid. Temperature reduction in the cutting zone in water-jet assisted turning. Journal of Materials Processing Technology, 106(1–3):68–73, 2000. doi: 10.1016/S0924-0136(00)00640-3.
[8] A. Marques, M. Paipa Suarez, W. Falco Sales, and Á. Rocha Machado. Turning of Inconel 718 with whisker-reinforced ceramic tools applying vegetable-based cutting fluid mixed with solid lubricants by MQL. Journal of Materials Processing Technology, 266:530–543, 2019. doi: 10.1016/j.jmatprotec.2018.11.032.
[9] A. Suárez, L.N. López de Lacalle, R. Polvorosa, F. Veiga, and A. Wretland. Effects of highpressure cooling on the wear patterns on turning inserts used on alloy IN718. Materials and Manufacturing Processes, 32(6):678–686, 2017. doi: 10.1080/10426914.2016.1244838.
[10] R. Polvorosa, A. Suárez, L.N. López de Lacalle, I. Cerrillo, A. Wretland, and F. Veiga: Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 andWaspaloy. Journal of Manufacturing Processes, 26:44–56, 2017. doi: 10.1016/j.jmapro.2017.01.012.
[11] A.R.C. Sharman, J.I. Hughes, and K. Ridgway. Surface integrity and tool life when turning Inconel 718 using ultra-high pressure 786 and flood coolant systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(6):653–664, 2008. doi: 10.1243/09544054JEM936.
[12] W.H. Pereira and S. Delijaicov. Surface integrity of Inconel 718 turned under cryogenic conditions at high cutting speeds. The International Journal of Advanced Manufacturing Technology, 104:2163–2177, 2019. doi: 10.1007/s00170-019-03946-1.
[13] H. González, O. Pereira, L.N. López de Lacalle, A. Calleja, I. Ayesta, and J. Muñoa. Flankmilling of integral blade rotors made in Ti6Al4V using cryo CO2 and minimum quantity lubrication. ASME. Journal of Manufacturing Science and Engineering, 143(9):091011, 2021. doi: 10.1115/1.4050548.
[14] A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, and D. Larrouquere. Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear, 262(7–8):931–942, 2007. doi: 10.1016/j.wear.2006.10.009.
[15] N.R. Dhar, M.W. Islam, S. Islam, and M.A.H. Mithu. The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI- 1040 steel. Journal of Materials Processing Technology, 171(1):93–99, 2006. doi: 10.1016/j.jmatprotec.2005.06.047.
[16] D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquère,V. Zerrouki, and J. Vigneau. A review of developments towards dry and high speed machining of Inconel 718 alloy. International Journal of Machine Tools and Manufacture, 44(4):439–456, 2004. doi: 10.1016/S0890-6955(03)00159-7.
[17] I.A. Choudhury and M.A. El-Baradie. Machining nickel base super alloys: Inconel 718. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 212(3):195–206, 1998. doi: 10.1243/0954405981515617.
[18] S.K. Thandra and S.K. Choudhury. Effect of cutting parameters on cutting force, surface finish and tool wear in hot machining. International Journal of Machining and Machinability of Materials, 7(3-4):260–273, 2010. doi: 10.1504/IJMMM.2010.033070.
[19] L.N. Lopez de Lacalle, J.A. Sanchez, A. Lamikiz, and A. Celaya. Plasma assisted milling of heatresistant superalloys. ASME Journal of Manufacturing Science and Engineering, 126(2):274– 285, 2016. doi: 10.1115/1.1644548.
[20] M.C. Shaw. Metal Cutting Principles. Clarendon, Oxford, 1984.
[21] E.O. Ezugwu, J. Bonney, and Y. Yamane. An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology, 134(2):233–253, 2003. doi: 10.1016/S0924-0136(02)01042-7.
[22] A. Jawaid, S. Koksal, and S. Sharif. Wear behavior of PVD and CVD coated carbide tools when face milling Inconel 718. Tribology Transactions, 43(2):325–331, 2000. doi: 10.1080/10402000008982347.
[23] T. Sugihara, H. Tanaka, and T. Enomoto. Development of novel CBN cutting tool for high speed machining of Inconel 718 focusing on coolant behaviors. Procedia Manufacturing, 10:436–442, 2017. doi: 10.1016/j.promfg.2017.07.021.
[24] G.A. Ibrahim, C.H.C. Haron, J.A. Ghani, A.Y.M. Said, and M.Z.A. Yazid. Performance of PVD-coated carbide tools when turning Inconel 718 in dry machining. Advances in Mechanical Engineering, 3:790975, 2011. doi: 10.1155/2011/790975.
[25] Z.P. Hao, Y.H. Fan, J.Q. Lin, and Z.X Yu. Wear characteristics and wear control method of PVD-coated carbide tool in turning Inconel 718. The International Journal of Advanced Manufacturing Technology, 78(5–8):1329–1336, 2015. doi: 10.1007/s00170-014-6752-0.
[26] B. Zhang, M.J. Njora, and Y. Sato. High-speed turning of Inconel 718 by using TiAlN- and (Al, Ti) N-coated carbide tools. The International Journal of Advanced Manufacturing Technology, 96(5–8):2141–2147, 2018. doi: 10.1007/s00170-018-1765-8.
[27] F. Zemzemi, J. Rech, W.B. Salem, A. Dogui, and P. Kapsa. Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an Inconel 718 alloy with CBN and coated carbide tools. Advances in Manufacturing Science and Technology, 38(1):5-22, 2014. doi: 10.2478/amst-2014-0001.
[28] W. Grzesik, J. Małecka, Z. Zalisz, K. Zak, and P. Niesłony. Investigation of friction and wear mechanisms of TiAlV coated carbide against Ti6Al4V Titanium alloy using pin-on-disc tribometer. Archive of Mechanical Engineering, 63(1):114-127, 2016. doi: 10.1515/meceng-2016-0006.
[29] V. Bushlya, F. Lenrick, A. Bjerke, H. Aboulfadl, M. Thuvander; J.-E. Ståhl, and R. M’Saoubi: Tool wear mechanisms of PcBN in machining Inconel 718: Analysis across multiple length scale. CIRP Annals, 70(1):73–78, 2021. doi: 10.1016/j.cirp.2021.04.008.
[30] A.R.F. Oliveira, L.R.R. da Silva, V. Baldin, M.P.C. Fonseca, R.B. Silva, and A.R. Machado: Effect of tool wear on the surface integrity of Inconel 718 in face milling with cemented carbide tools. Wear, 476:203752, 2021. doi: 10.1016/j.wear.2021.203752.
[31] A.K.M.N. Amin, S.A. Sulaiman, and M.D. Arif. Development of mathematical model for chip serration frequency in turning of stainless steel 304 using RSM. Advanced Materials and Process Technology, 217-219:2206–2209, 2012. doi: .
[32] J. Hua, and R. Shivpuri. Prediction of chip morphology and segmentation during the machining of titanium alloys. Journal of Materials Processing Technology, 150(1-2):124–133, 2004. doi: 10.1016/j.jmatprotec.2004.01.028.
[33] K. Lin, W. Wang, R. Jiang and Y. Xiong. Effect of tool nose radius and tool wear on residual stresses distribution while turning in situ TiB2/7050Al metal matrix composites. The International Journal of Advanced Manufacturing Technology, 100:143–151, 2019. doi: 10.1007/s00170-018-2742-y.
[34] K. Mahesh, J.T. Philip, S.N. Joshi and B. Kuriachen. Machinability of Inconel 718: A critical review on the impact of cutting temperatures. Materials and Manufacturing Processes, 36(7):753–791, 2021. doi: 10.1080/10426914.2020.1843671.
[35] V. Sivalingam Y. Zhao, R. Thulasiram, J. Sun, G. Kai, and T. Nagamalai. Machining behaviour, surface integrity and tool wear analysis in environment friendly turning of Inconel 718 alloy. Measurement,174:109028, 2021. doi: 10.1016/j.measurement.2021.109028.
[36] Z. Peng, X. Zhang, and D. Zhang. Performance evaluation of high-speed ultrasonic vibration cutting for improving machinability of Inconel 718 with coated carbide tools. Tribology International, 155:106766, 2021. doi: 10.1016/j.triboint.2020.106766.
[37] D.G. Flom, R. Komanduri, and M. Lee. High-speed machining of metals. Annual Review of Material Science, 14:231–278, 1984. doi: 10.1146/annurev.ms.14.080184.001311.
[38] N.L. Bhirud and R.R. Gawande. Optimization of process parameters during end milling and prediction of work piece temperature rise. Archive of Mechanical Engineering, 64(3):327–346, 2017. doi: 10.1515/meceng-2017-0020.
[39] R.S. Pawade, S.S. Joshi, P.K. Brahmankar, and M. Rahman. An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. J ournal of Materials Processing Technology, 192-193:139–146, 2007. doi: 10.1016/j.jmatprotec.2007.04.049.
[40] A. Shokrani, V. Dhokia, and S.T. Newman. Environmentally conscious machining of difficultto- machine materials with regard to cutting fluids. International Journal of Machine Tools and Manufacture, 57:83–101, 2012. doi: 10.1016/j.ijmachtools.2012.02.002.
[41] Y.S. Liao, H.M. Lin, and J.H. Wang. Behaviors of end milling Inconel 718 superalloy by cemented carbide tools. Journal of Materials Processing Technology, 201(1–3):460–465, 2008. doi: 10.1016/j.jmatprotec.2007.11.176.
[42] R. Komanduri and T.A. Schroeder. On shear instability in machining a nickel-iron base superalloy. Journal of Engineering for Industry, 108(2):93–100. 1986. doi: 10.1115/1.3187056.
[43] R. Rakesh and S. Datta. Machining of Inconel 718 using coated wc tool: effects of cutting speed on chip morphology and mechanisms of tool wear. Arabian Journal for Science and Engineering, 45:797–816, 2020. doi: 10.1007/s13369-019-04171-4.
[44] S. Belhadi, T. Mabrouki, J.F. Rigal, and L. Boulanouar. Experimental and numerical study of chip formation during straight turning of hardened AISI 4340 steel. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(7):515– 524, 2005. doi: 10.1243/095440505X32445.
[45] A. Thakur and S. Gangopadhyay. Evaluation of micro-features of chips of Inconel 825 during dry turning with uncoated and chemical vapour deposition multilayer coated tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(6):979–994, 2018. doi: 10.1177/0954405416661584.
[46] M. Rahman,W.K.H. Seah, and T.T. Teo. The machinability of Inconel 718. Journal of Materials Processing Technology, 63(1–3):199–204, 1997. doi: 10.1016/S0924-0136(96)02624-6.
[47] S.P. Sahoo and S. Datta. Dry machining performance of AA7075-T6 alloy using uncoated carbide and MT-CVD TiCN-Al2O3 coated carbide Inserts. Arabian Journal of Science and Engineering,45:9777–9791, 2020. doi: 10.1007/s13369-020-04947-z.
[48] H.Z. Li, H. Zeng, and X.Q. Chen. An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. Journal of Materials Processing Technology, 180(1–3):296–304, 2006. doi: 10.1016/j.jmatprotec.2006.07.009.
Go to article

Authors and Affiliations

Shailesh Rao Agari
1

  1. Department of Industrial and Production Engineering, The National Institute of Engineering, Mysuru, Karnataka, India
Download PDF Download RIS Download Bibtex

Abstract

Optical waveguides (WGs) are widely used as interconnects in integrated optical circuits both for telecommunication and sensing applications. There are different kind of optical WG designs that offers different guiding parameters, opening a vast number of possibilities. A silica-titania (SiO2:TiO2) rib WG is discussed and examined by a numerical analysis in this article with a great emphasis on the analysis of bending losses and optimization. A modal analysis for different basic parameters of the WG is presented with a detailed wavelength-based modal analysis. Various potential fabrication methods are discussed, however, a sol-gel method and dip-coating deposition technique are proposed for the low-cost development of such WGs. Moreover, an approach towards minimizing the bending losses by adding an upper cladding layer on the rib WG is presented and described.
Go to article

Authors and Affiliations

Muhammad Shahbaz
1
ORCID: ORCID
Łukasz Kozlowski
1
Muhammad A. Butt
1
ORCID: ORCID
Ryszard Piramidowicz
1
ORCID: ORCID

  1. Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

An application specific integrated design using Quadrature Linear Discriminant Analysis is proposed for automatic detection of normal and epilepsy seizure signals from EEG recordings in epilepsy patients. Five statistical parameters are extracted to form the feature vector for training of the classifier. The statistical parameters are Standardised Moment, Co-efficient of Variance, Range, Root Mean Square Value and Energy. The Intellectual Property Core performs the process of filtering, segmentation, extraction of statistical features and classification of epilepsy seizure and normal signals. The design is implemented in Zynq 7000 Zc706 SoC with average accuracy of 99%, Specificity of 100%, F1 score of 0.99, Sensitivity of 98% and Precision of 100 % with error rate of 0.0013/hr., which is approximately zero false detection.

Go to article

Authors and Affiliations

S. Syed Rafiammal
D. Najumnissa
G. Anuradha
S. Kaja Mohideen
P.K. Jawahar
Syed Abdul Mutalib
Download PDF Download RIS Download Bibtex

Abstract

Basing on experimental data, the possibility of consolidating side products of turning, milling and drilling of aluminum alloys into the form and properties of solids metals using low-temperature KoBo extrusion method has been assessed. Research regarding mechanical and structural properties of the final products revealed their total consolidation and proved their compatibility with requirements for products made of bulk billets. Importantly, the chips consolidation process does not require high or even raised temperature, which significantly reduces the unfavorable phenomenon of chips oxidation and its negative influence on the structure and mechanical properties of products. A very good effect of chips compaction has been proved by KoBo method, which has been confirmed by relatively slightly different mechanical properties of the material after recycling compared with the bulk one. Among currently applied techniques of consolidation of dispersed fractions in a solid state (leaving the melting stage out), the KoBo method seems an innovative way of utilizing metallic chips, as it enables a cold deformation process.

The paper presents investigations using 2024 and 7075 aluminum alloys chips from manufacturing process, formed into briquettes and deformed under conditions of KoBo extrusion process, which enables to obtain long product by cold forming. The final product characterized by good microstructures, mechanical features and low cost of production.

Go to article

Authors and Affiliations

B. Pawłowska
R.E. Śliwa
ORCID: ORCID
M. Zwolak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Magnesium-based MMCs are widely used in structural-based applications due to their lightweight, high hardness, corrosion and wear resistance. Also, machining is an important manufacturing process that is necessary to ensure dimensional accuracy and produce intricate shapes. In this context, the machining of Magnesium based metal matrix composites is undertaken to study the impact of the cutting parameters on the machinability behaviour. In this work, turning of pure Mg/SiCp on a Lathe is done and an in-depth assessment on the machining forces, machined surface quality, chip microstructure, and tool morphology has been carried out using TiAlN coated tooling insert. The analysis revealed that the thrust force decreased due to the thermal softening of the matrix meanwhile the feed force also followed the similar trend at higher cutting speeds because of the minimized built-up edge and cutting depth whereas principal cutting force was inconsistent at higher cutting speeds. The surface finish was better at high cutting speed – low feed combination. The chip microstructure revealed that gross fracture propagation at the free surface and variations in the shear bands have occurred at different cutting speeds. Tool studies using SEM analysis revealed wear modes like chipping and built-up edge at low cutting speeds, but with a reduced impact at intermediate cutting conditions, whereas abrasion wear was observed predominantly in the tool nose at higher cutting speeds.
Go to article

Authors and Affiliations

K. Gobivel
1
ORCID: ORCID
K.S. Vijay Sekar
2
ORCID: ORCID

  1. KCG College of Technology, Karapakkam, Chennai, India
  2. Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, India

This page uses 'cookies'. Learn more