Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of presented studies was to develop a new geometry of the overflow part of standard ATD–C tester for derivative thermal analysis

in a way that it would allow to obtain samples for abrasion and mechanical properties tests in the same mould without the need of cutting

them from a block of material. The pattern of new ATD–P tester has parts reflecting implemented samples. Computer simulations

regarding initial verification of new tester were performed in NovaFlow software. Chromium cast iron melts were made for testing the

sampler in real conditions and TDA analysis for casting material were conducted. The sandmix was prepared on silica sand matrix per the

ALPHASET technology. This new solution greatly simplifies the preparations of materials difficult to machine.

Go to article

Authors and Affiliations

A. Studnicki
R. Dojka
M. Dojka
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research concerning to AlCu4MgSi alloy ingots produced using horizontal continuous casting process. The presented research was focused on the precise determination of phase composition of the precipitates formed during the solidification of ingots and the analysis of their thermal stability. In order to assess the morphology of precipitates in the AlCu4MgSi alloy, data obtained by using a computer simulation of thermodynamic phenomena were compiled with results obtained using advanced research techniques, i.e. High-temperature X-ray diffraction (HT-XRD), SEM-EDS, Thermal and derivative analysis (TDA) and Glow discharge optical emission spectroscopy (GD OES). SEM observations and analysis of chemical composition in micro-areas showed that the precipitates are mainly intermetallic θ-Al2Cu and β-Mg2Si phases, and also presence of Al19Fe4MnSi2 intermetallic phase was confirmed by X-ray diffraction studies. Based on the prepared Thermo-Calc simulation data, high-temperature X-ray diffraction measurements were conducted.

Go to article

Authors and Affiliations

P.M. Nuckowski
M. Kondracki
T. Wróbel
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The objective of the research was to determine the influence of boron on the crystallization process and microstructure of ductile cast iron.

In the case of ductile cast iron it is a vital issue because even as little as trace presence of boron changes the properties of ductile cast iron

in a significant way. With the use of a new ATD-4 (TDA) tester and CRYSTALDIGRPAH converter it was possible to measure the

crystallization process parameters of the same alloy with four different contents of boron in one mould. Four samples with different boron

contents were extracted, their microhardness was measured and quantitative analysis of microstructure was conducted. Obtained results

allowed to state that with increasing content of boron the amount of graphite precipitates decreases, the amount of pearlite precipitates

increases, the shape of graphite precipitates deteriorates and hardness increases. It is also planned to perform additional testings with boron

contents between previously tested values.

Go to article

Authors and Affiliations

A. Studnicki
R. Dojka
Download PDF Download RIS Download Bibtex

Abstract

The article presents crystallization process of silicon molybdenum ductile cast iron (SiMo). The alloy with 5% silicon content and with

variable amounts of Mo in a range of 0-1% was chosen for the research. The carbon content in the analysed alloys did not exceed 3,1%.

The studies of crystallization process were based on thermal – derivative analysis (TDA). Chemical composition of all examined samples

was analysed with the use of LECO spectrometer. Additionally, the carbon and the sulphur content was determined basing on carbon and

sulphur LECO analyser. For metallographic examination, the scanning electron microscopy (SEM) with EDS analyser was used. Disclosed

phases have been also tested with the use of X-ray diffraction. The results allowed the description of crystallization processes of silicon

molybdenum ductile cast iron using thermal – derivative analysis (TDA). Conducted studies did not allow for the clear identification of all

complex phases containing molybdenum, occurring at the grain boundaries. Therefore, the further stages of the research could include the

use of a transmission electron microscope to specify the description of complex compounds present in the alloy.

Go to article

Authors and Affiliations

M. Stawarz
Download PDF Download RIS Download Bibtex

Abstract

The work presents the results of the investigations of the effect of the nitrogen (N2) refining time „τraf” and the gas output on the course of

the crystallization process, the microstructure and the gassing degree of silumin 226 used for pressure casting. The refinement of the

examined silumin was performed with the use of a device with a rotating head. The crystallization process was examined by way of

thermal analysis and derivative analysis TDA. The performed examinations showed that the prolongation of the N2 refining time causes

a significant rise of the temperature of the crystallization end of the silumin, „tL”, as well as a decrease of its gassing degree, „Z”. An

increase of the nitrogen output initially causes an increase of the temperature „tL” and a drop of the gassing degree „Z”, which reach their

maximal values with the output of 20 dm3

/min. Further increase of the output causes a decrease of the value „tL” and an increase of „Z”.

The examined technological factors of the refining process did not cause any significant changes in the microstructure of silumin 226.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the effect of the temperature and hold time in the holding furnace of 226 silumin on the characteristic quantities of

TDA curves. The temperature of phase transformations and the cooling rate were tested.It has been shown that increasing both the hold

time and the temperature in the holdingfurnace cause the decreasethe end ofα+Al9Fe3Si2+β and α+Al2Cu+βternary eutectics

crystallizationtemperature in the tested silumin. This is due to the fact an increase in amounts of impurities as a result of reacting theliquid

alloy with the gases contained in the air.It has been shown, however, that examined technological factors ofthe metal preparation do not

cause systematic changes in the cooling rate.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the crystallization process of silumin by the TDA thermographic method and the results of the cast

microstructure obtained in the sampler TDA-10, that was cooling down in ambient air. The study was conducted for silumin AlSi11

unmodified. The work demonstrated that the use of thermal imaging camera allows for the measurement and recording the solidification

process of silumin. Thermal curve was registered with the infrared camera and derivative curve that was calculated on the base of thermal

curve have both a very similar shape to adequate them TDA curves obtained from measurements using a thermocouple. Test results by

TDA thermographic method enable quantitative analysis of the kinetics of the cooling and solidification process of neareutectic silumin.

Go to article

Authors and Affiliations

R. Władysiak
A. Kozuń
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies of the effect of chromium concentration on the solidification process, microstructure and selected

properties of cast iron with vermicular graphite. The vermicular graphite cast iron was obtained by an Inmold process. Studies covered the

cast iron containing chromium in a concentration at which graphite is still able to preserve its vermicular form. The effect of chromium on

the temperature of eutectic crystallization and on the temperature of the start and end of austenite transformation was discussed. The conditions

under which, at a predetermined chromium concentration, the vermicular graphite cast iron of a pearlitic matrix is obtained were

presented, and the limit concentration of chromium was calculated starting from which partial solidification of the cast iron in a metastable

system takes place. The effect of chromium on the hardness of cast iron, microhardness of individual phases and surface fraction of carbides

was disclosed.

Go to article

Authors and Affiliations

G. Gumienny
M. Dondzbach
B. Kacprzyk
Download PDF Download RIS Download Bibtex

Abstract

In this paper crystallization studies of low-alloyed construction cast steel were presented for different additions of chromium, nickel and

molybdenum modified with vanadium and titanium. Studies were conducted using developed TDA stand, which additionally enabled

evaluation of cooling rate influence on crystallization process of investigated alloys.

Go to article

Authors and Affiliations

A. Studnicki
M. Kondracki
J. Szajnar
T. Wróbel
Download PDF Download RIS Download Bibtex

Abstract

The article presents the investigations of 7xxx aluminium alloys performed by the method of thermal and derivational analysis. The studies made it possible to identify the effect of the changes in the Cu concentration, the total Zn and Mg weight concentrations and the Zn/Mg weight concentration ratio on their crystallization process: the cooling as well as the kinetics and dynamics of the thermal process of cooling and crystallization. Metallographic studies were performed on the microstructure of the examined alloys and their HB hardness was measured. The evaluation of the changes was presented in reference to the model alloys EN AW-7003 and EN AW-7010, whose microstructure under the conditions of thermodynamic equilibrium are described by the phase diagrams: Al-Zn-Mg and Al-Zn-Mg-Cu. The performed investigations confirmed that the hardness HB of the examined alloys is mainly determined by the reinforcement of the matrix αAl by the introduced alloy additions and the presence of phases Θ(Al2Cu) and S(Al2CuMg) rich in copper, as well as η(MgZn2), in the examined alloys' microstructure. The increase of the amount of intermetallic phases precipitated in the microstructure of the examined alloys is caused, beside Cu, by the characteristic change of Zn wt. concentration and Mg. It was proposed that the process of one-stage thermal treatment of the examined alloys be introduced at a temperature of up to tJ-20 °C, which will prevent the exceedance of the solidus temperature.

Go to article

Authors and Affiliations

B.P. Pisarek
E. Czekaj
T. Pacyniak
Download PDF Download RIS Download Bibtex

Abstract

The work presents the test result of the influence of cooling rate on the microstructure of AZ91 alloy, Vickers micro-hardness and Brinell

hardness. Studies cooling and crystallization of AZ91 alloy was cast into the ceramic shells pre-heated to 180 ° C and then air-cooled at

ambient temperature or intensively super cooled in the liquid coolant. The TDA method was applied to record and characterize the thermal

effect resulting from the phase transformations occurring during the crystallization of AZ91 alloy. The kinetics and dynamics of the

thermal processes of crystallization of AZ91 alloy in the ceramic shells were determined. Metallographic tests were performed with the

use of an optical microscope. A comparison of these test results with the thermal effect recorded by way of the TDA method was made.

Influence of cooling rate of AZ91 on HV0, 01 micro-hardness and Brinell hardness alloy was examined.

Go to article

Authors and Affiliations

C. Rapiejko
E. Czekaj
T. Pacyniak
B. Pisarek
Download PDF Download RIS Download Bibtex

Abstract

The work presents the results of the examinations of silumin 226 as well as a silumin produced on its basis containing a W and Mo addition

introduced in the amount of 0.1; 0.2; 0.3 and 0.4% of both elements simultaneously. Investigations of the crystallization process of the

silumins by the TDA method were conducted. Also, a microscopic analysis of their microstructure was performed and their basic mechanical

properties were determined. Microstructure tests were made on casts produced in an TDA sampler as well as by the pressure method.

The investigations exhibited a change in the course of crystallization of the silumin containing 0.3 and 0.4% W and Mo with respect to

silumin 226 and the silumin with the addition of 0.1 and 0.2%. The presence of additional phases which did not occur in the case of lower

addition contents was established in the silumin containing 0.3-0.4% W and Mo, regardless of the applied casting technology. The tests

showed the possibility of increasing the tensile strength Rm, the proof stress Rp0,2 and the unit elongation A of the silumin as a result of a

simultaneous introduction of the W and Mo addition. The highest values of Rm, Rp0,2 and A were obtained in the silumins with the additions

of these elements within the range of 0.1-0.2% each.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
K. Walas
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the crystallization process of silumin by the TDA thermographic method and the results of the cast

microstructure obtained in the sampler ATD-10, that was cooling down in ambient air. The study was conducted for silumins AlSi8 and

AlSi11 unmodified. The work demonstrated that the use of thermal imaging camera allows for the measurement and recording the

solidification process of silumin. Thermal curve was registered with the infrared camera and derivative curve that was calculated on the

base of thermal curve have both a very similar shape to adequate them TDA curves obtained from measurements using a thermocouple.

Test results by TDA thermographic method enable quantitative analysis of the kinetics of the cooling and solidification process of hypoand

neareutectic silumins.

Go to article

Authors and Affiliations

R. Władysiak
T. Pacyniak
A. Kozuń
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of hypoeutectic silumin 226 grade and silumin produced on its basis through the addition of V and Mo.

Vanadium and molybdenum were added as the preliminary alloy AlV10 and AlMo8 in an amount providing the concentration of 0.1; 0.2;

0.3 and 0.4% V and Mo. TDA curves of tested silumins were presented; regardless of the chemical composition there were similar thermal

effects. Pressure castings microstructure research revealed the presence in silumins with the addition of V and Mo phases do not occur in

silumin without these additives. These phases have a morphology similar to the walled, and their size increases with increasing

concentration of V and Mo. The size of the precipitates of these phases silumin containing 0.1% V and Mo does not exceed 10 microns,

while 0.4% of the content of these elements increases to about 80 microns. Tests of basic mechanical properties of silumins were carried

out. It has been shown that the highest values of tensile strength Rm = 295 MPa and elongation A = 4.2% have silumin containing

approximately 0.1% V and Mo. Increasing concentrations of these elements causes a gradual lowering of the Rm and A values.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

The article presents the investigation results of the crystallization (performed by means of the TDA method) and the microstructure of complex aluminium bronzes with the content of 6% Al, 4% Fe and 4% Ni, as well as Si additions in the scope of 1–2% and Cr additions in the scope of 0.1–0.3%, which have not been simultaneously applied before. For the examined bronze, the following tests were performed: hardness HB, impact strength (KU2). For bronze CuAl6Fe4Ni4Si2Cr0.3, characterizing in the highest hardness, wear tests were conducted with dry friction and the dry friction coefficient. The investigations carried out by means of the X-ray phase analysis demonstrated the following phases in the microstructure of this bronze: αCu, γ2 and complex intermetallic phases based on iron silicide type Fe3Si (M3Si M={Fe,Cr,…}). Compared to the normalized aluminium bronzes (μ=0.18–0.23), the examined bronze characterizes in relatively low wear and lower friction coefficient during dry friction (μ=0.147±0.016).

Go to article

Authors and Affiliations

B.P. Pisarek
B. Kowalski
H. Atapek
Ş. Polat
T. Tüfekçi

This page uses 'cookies'. Learn more