Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 31
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Codeposition of antimony and tin from acidic chloride and chloride-sulfate baths was investigated. The calculations of distribution of species showed domination of neutral SnCl2 and anionic SbCl4 – complexes in chloride solution, while in the presence of sulfate ions neutral SnSO4 and cationic SbCl2+ complexes were found. Cyclic voltammetry, anodic stripping analysis and potentiostatic measurements showed that antimony deposited favorably and the reaction run under limiting control. Analysis of chronoamperometric curves suggested instantaneous nucleation of the solid phase in the chloride bath, but progressive model was more probable in the presence of sulfate ions.
Go to article

Authors and Affiliations

E. Rudnik
M. Kostępski
Download PDF Download RIS Download Bibtex

Abstract

In this article the structural and mechanical properties of grain refinement of Cu-Sn alloys with tin content of 10%, 15% and 20% using the KOBO method have been presented. The direct extrusion by KOBO (name from the combination of the first two letters of the names of its inventors – A. Korbel and W. Bochniak) method employs, during the course of the whole process, a phenomenon of permanent change of strain travel, realized by a periodical, two-sided, plastic metal torsion. Moreover the aim of this work was to study corrosion resistance. The microstructure investigations were performed using an optical microscope Olimpus GX71, a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM). The mechanical properties were determined with INSTRON 4505/5500 machine. Corrosion tests were performed using «Autolab» set – potentiostat/galvanostat from EcoChemie B.V. with GPES software ver. 4.9. The obtained results showed possibility of KOBO deformation of Cu-Sn casting alloys. KOBO processing contributed to the refinement of grains and improved mechanical properties of the alloys. The addition of tin significantly improved the hardness. Meanwhile, with the increase of tin content the tensile strength and yield strength of alloys decrease gradually. Ductility is controlled by eutectoid composition and especially δ phase, because they initiate nucleation of void at the particle/matrix interface. No significant differences in the corrosion resistance between cast and KOBO processed materials were found.

Go to article

Authors and Affiliations

J. Sobota
K. Rodak
M. Nowak
Download PDF Download RIS Download Bibtex

Abstract

High-tin bronzes are used for church bells and concert bells (carillons). Therefore, beside their decorative value, they should also offer

other functional properties, including their permanence and good quality of sound. The latter is highly influenced by the structure of bell

material, i.e. mostly by the presence of internal porosity which interferes with vibration of the bell waist and rim, and therefore should be

eliminated. The presented investigations concerning the influence of tin content ranging from 20 to 24 wt% on mechanical properties of

high-tin bronzes allowed to prove the increase in hardness of these alloys with simultaneous decrease in the tensile and the impact

strengths (Rm and KV, respectively) for the increased tin content. Fractures of examined specimens, their porosity and microstructures

were also assessed to explain the observed regularities. A reason of the change in the values of mechanical properties was revealed to be

the change in the shape of α-phase crystals from dendritic to acicular one, and generation of grain structure related to the increased Sn

content in the alloy.

Go to article

Authors and Affiliations

M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

This work aims to study the vertical planning method for the terrain area as part of the process of construction geodetic support. Such planning will be carried out based on the aerial survey data from UAVs, which allow the creation of a high-quality digital elevation model (DEM) with sufficient node density for reliable surface terrain modelling. During the study, we test the hypothesis of the possibility of using archival aerial photographs from UAVs to model the terrain of the local area. Both the actual achievable accuracy of terrain modeling in the course of photogrammetric processing of archived aerial photographs, and methods for creating a polygonal terrain model using input spatial data in the form of clouds of 3D points of a given density require analysis. To do this, we will perform comparisons of the accuracy of calculating earth masses, carried out based on the digital triangulation elevation models (TIN). These models were based on different algorithms for creating Delaunay triangulation with different degrees of 3D point sparsity.We proposed to use sparsity of dense clouds of points representing the surface of the terrain and which were obtained by the photogrammetric method. Computer terrain modelling and calculation of vertical planning parameters were performed by us for the area with flat terrain at angles up to 3.5 degrees. We evaluated the potential of archived UAV aerial photographs and algorithms for creating Delaunay triangulation at different densities of its nodes for calculating the volumes of earth masses.
Go to article

Bibliography

Abris Design Group (2021). https://abris.aero/category/produkts-en/#FLIRT%20Arrow.
Aguilar, F.J., Rivas, J.R., Nemmaoui, A. et al. (2019). UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador. Sensors, 19(8), 1934. DOI: 10.3390/s19081934.
Akgul, M., Yurtseven, H., Gulci, S. et al. (2018). Evaluation of UAV- and GNSS-Based DEMs for Earthwork Volume. Arab. J. Sci. Eng., 43, 1893–1909. DOI: 10.1007/s13369-017-2811-9.
Al-Jabbar Hadi, A.A. and Alhaydary, M. (2018). Calculations of earthwork quantity by using civil 3d. J. Engineer. Sustain. Dev., 6, 13–20. DOI: 10.31272/jeasd.2018.6.2.
Baran, P.I. and Marushchak, M.P. (2011). Methods of vertical planning for construction sites. Geodesy Cartogr., 6, 9–15.
Burshtynska, Kh.V. and Zayats, O.S. (2002). Research of accuracy of construction of digital models of a relief on the basis of cartographic data. Geodesy Cartogr., 2, 26–31.
Christ, A., Europe, E., and Horlbeck, I. (2018). Simplify Your 3D Models – Collaborative Engineering Based on Lightweight CAD Data. Product Data Journal, 2, 28–31. http://prostep.epaper.pro/ journal-2018-02/en/#28.
Chudý, R., Iring, M., and Feciskanin, R. (2013). Evaluation of the data quality of digital elevation models in the context of INSPIRE. Geoscience Engineering, 2, 9–24. DOI: 10.2478/gse-2014-0053.
Dorozhinsky, O. and Tukay, R. (2008). Photogrammetry. Textbook. Lviv: Lviv Polytechnic National University Publishing House.
Garasymchuk, I.F. (2003). Operational method elaboration of the soil volume determination. PhD thesis (geodesy). National University “Lviv Polytechnic”. Lviv.
Haronian, E. and Sacks, R. (2020). Production process evaluation for earthworks. In Tommelein, I.D. and Daniel, E. (eds.), Proceedings of 28th Annual Conference of the International Group for Lean Construction (IGLC28), Berkeley, California, USA. DOI: 10.24928/2020/0020.
Hlotov, V., Hunina, R´ ., Kolesnichenko, V. et al. (2018). Development and investigation of UAV for aerial surveying. Geodesy Cartogr. Aerial Photogr., 87, 48–57. DOI: 10.23939/istcgcap2018.01.048.
Hamid I.H.A., Narendrannathan, N., Choy L.E. et al. (2019). Innovation in earthwork practices. In IOP Conference Series Materials Science and Engineering, 512:012054. DOI: 10.1088/1757- 899X/512/1/012054.
Kolb, I.Z. (2000). The analytical aerial triangulation when the coordinates of centers of projection are known. PhD thesis (geodesy). Lviv Polytechnic National University, Lviv.
Kong, N.T. (2011). Research and development of a high-performance algorithm for constructing digital elevation models. PhD thesis (geodesy). Moscow State University of Geodesy and Cartography, Moscow.
Kostov, G. (2016). Vertical planning based on 3d terrestrial laser scanning and GNSS technologies. In XXV International symposium on modern technologies, education and professional practice in geodesy and related fields. Sofia, November 3-4, 2016.
Liu, Q., Duan, Q., Zhao, P. et al. (2021). Summary of calculation methods of engineering earthwork. J. Phys. Conference Series, 1802, 032002. DOI: 10.1088/1742-6596/1802/3/032002.
Ministry of Justice of Ukraine. (1998). Instruction on topographic survey in scales 1:5000, 1:2000, 1:1000 and 1:500 (GKNTA-2.04-02-98), approved by the order of Ukrgeodeskartografiya dated 09.04.98, No. 56, registered in the Ministry of Justice of Ukraine on 23.06.98, No. 393/2833.
Novakovsky, B.A. and Permyakov, R.V. (2019). Complex geoinformation-photogrammetric modeling of relief: a tutorial. Moscow: Publishing house MIIGAiK.
Ostrovsky, A. (2015a). Criteria of quality, accuracy and completeness digital elevation models. Engineer. Geodesy, 62, 23–31.
Ostrovsky, A.V. (2015b). Review of some methods of relief approximation. Mìstobuduvannâ ta teritorìal’ne planuvannâ, 58, 380–391.
Ostrovsky, A.V. (2016). Features of using kriging method for approximating relief. Journal of Lviv National Agrarian University. Architecture and Farm Building, 17, 33–41. Photomod. (2019). Digital photogrammetric system Photomod. Version 6.0.1 User Guide. Creation of a digital elevation model. Moscow: Rakurs.
Qiu, L. (2017). Vertical urban planning and flood control and drainage using GIS technology. Open House International, 42(3), 10–14. DOI: 10.1108/OHI-03-2017-B0003.
Ravibabu, M.V. and Jain, K. (2008). Digital elevation model accuracy aspects. J. Appl. Sci., 8(1), 134–139. DOI: 10.3923/jas.2008.134.139.
Rudyj, R.M. (2016). Application of artificial neural networks for classifying surface areas with a certain relief. Geodesy Cartogr. Aerial Photogr., 83, 124–132. DOI: 10.23939/istcgcap2016.01.124.
Schultz, R.V., Belous, M.V., Annenkov, A.O. et al. (2013). Features of engineering and geodetic support for the construction of Arena Lviv stadium. Mìstobuduvannâ ta teritorìal’ne planuvannâ, 50, 759– 766.
Schultz, R.V. and Ostrovsky, A.V. (2016). Investigation of the statistical distribution of residual deviations for various approaches to digital elevation modeling. Scientific Journal, 1/2(18), 44–52.
Toth, C., Jozkow, G., and Grejner-Brzezinska, D. (2015). Mapping with small UAS: A point cloud accuracy assessment. J. Appl. Geod., 9(4), 213–226. DOI: 10.1515/jag-2015-0017.
Zhilin, L., Qing, Z., and Chris, G. (2005). Digital terrain modeling: principles and methodology. CRC Press.
Go to article

Authors and Affiliations

Ihor Trevoho
1
ORCID: ORCID
Apollinariy Ostrovskiy
1
Ihor Kolb
2
Olena Ostrovska
3
Viacheslav Zhyvchuk
4

  1. Lviv Polytechnic National University, Lviv, Ukraine
  2. Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine
  3. Lviv Technical and Economic College of Lviv Polytechnic National University, Lviv, Ukraine
  4. 2Hetman Petro Sahaidachnyi National Army Academy, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The growing interest in one-dimensional tin oxide-based nanomaterials boosts research on both high-quality nanomaterials as well as production methods. This is due to the fact that they present unique electrical and optical properties that enable their application in various (opto)electronic devices. Thus, the aim of the paper was to produce ceramic SnO₂ nanowires using electrospinning with the calcination method, and to investigate the influence of the calcination temperature on the morphology, structure and optical properties of the obtained material. A scanning electron microscope (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the morphology and chemical structure of obtained nanomaterials. The optical properties of manufactured one-dimensional nanostructures were investigated using UV-Vis spectroscopy. Moreover, based on the UV-Vis spectra, the energy band gap of the prepared nanowires was determined. The analysis of the morphology of the obtained nanowires showed that both the concentration of the precursor in the spinning solution and the calcination temperature have a significant impact on the diameter of the nanowires and, consequently, on their optical properties.
Go to article

Bibliography

  1.  W. Matysiak and T. Tański, “Novel bimodal ZnO (amorphous)/ZnO NPs (crystalline) electrospun 1D nanostructure and their optical characteristic,” Appl. Surf. Sci., vol. 474, pp. 232–242, Apr. 2019.
  2.  P. Jarka, T. Tański, W. Matysiak, Ł. Krzemiński, B. Hajduk, and M. Bilewicz, “Manufacturing and investigation of surface morphology and optical properties of composite thin films reinforced by TiO2, Bi2O3 and SiO2 nanoparticles,” Appl. Surf. Sci., vol. 424, pp. 206–212, Dec. 2017.
  3.  V.R. Bandi et al., “Synthesis, structural and optical properties of pure and rare-earth ion doped TiO2 nanowire arrays by a facile hydrothermal technique,” Thin Solid Films, vol. 547, pp. 207–211, 2013.
  4.  V.M.D.S. Rocha, M.D.G. Pereira, L.R. Teles, and M.O.D.G. Souza, “Effect of copper on the photocatalytic activity of semiconductor- based titanium dioxide (anatase) and hematite (α-Fe2O3),” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., vol. 185, no. 1, pp. 13–20, Jul. 2014.
  5.  Z. Tao, Y. Li, B. Zhang, G. Sun, J. Cao, and Y. Wang, “Bi-doped urchin-like In2O3 hollow spheres: Synthesis and improved gas sensing and visible-light photocatalytic properties,” Sensors Actuators B Chem., vol. 321, p. 128623, Oct. 2020.
  6.  M. Parthibavarman, M. Karthik, and S. Prabhakaran, “Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material,” Vacuum, vol. 155, pp. 224–232, Sep. 2018.
  7.  Y. Chen et al., “SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress,” J. Energy Chem., vol. 35, pp. 144–167, Aug. 2019.
  8.  M. Dou and C. Persson, “Comparative study of rutile and anatase SnO2 and TiO2: Band-edge structures, dielectric functions, and polaron effects,” J. Appl. Phys., vol. 113, no. 8, p. 083703, Feb. 2013.
  9.  X. Zhang et al., “SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells,” J. Power Sources, vol. 402, pp. 460–467, Oct. 2018.
  10.  V.S. Jahnavi, S.K. Tripathy, and A.V.N. Ramalingeswara Rao, “Structural, optical, magnetic and dielectric studies of SnO2 nano particles in real time applications,” Phys. B Condens. Matter, vol. 565, pp. 61–72, Jul. 2019.
  11.  M.A. Yildirim, S.T. Yildirim, E.F. Sakar, and A. Ateş, “Synthesis, characterization and dielectric properties of SnO2 thin films,” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., vol. 133, pp. 60–65, Dec. 2014.
  12.  K. Bhuvaneswari et al., “Enhanced photocatalytic activity of ethylenediamine-assisted tin oxide (SnO2) nanorods for methylene blue dye degradation,” Mater. Lett., vol. 276, p. 128173, Oct. 2020.
  13.  L.R. Hou, L. Lian, L. Zhou, L.H. Zhang, and C.Z. Yuan, “Interfacial hydrothermal synthesis of SnO2 nanorods towards photocatalytic degradation of methyl orange,” Mater. Res. Bull., vol. 60, pp. 1–4, Dec. 2014.
  14.  D. Narsimulu, E.S. Srinadhu, and N. Satyanarayana, “Surfactant-free microwave-hydrothermal synthesis of SnO2 flower-like structures as an anode material for lithium-ion batteries,” Materialia, vol. 4, pp. 276–281, Dec. 2018.
  15.  S. Sharma and S. Chhoker, “CVD grown doped and Co-doped SnO2 nanowires and its optical and electrical studies,” Mater. Today Proc., vol. 28, pp. 375–378, Jan. 2020.
  16.  C. Gao, S. Yuan, B. Cao, and J. Yu, “SnO2 nanotube arrays grown via an in situ template-etching strategy for effective and stable perovskite solar cells,” Chem. Eng. J., vol. 325, pp. 378–385, Oct. 2017.
  17.  W. Matysiak, T. Tanski, and W. Smok, “Electrospinning as a versatile method of composite thin films fabrication for selected applications,” Solid State Phenom., vol. 293, pp. 35–49, 2019.
  18.  T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, “Electrospinning of nanofibers,” J. Appl. Polym. Sci., vol. 96, no. 2, pp. 557–569, Apr. 2005.
  19.  T. Tański, W. Matysiak, and P. Jarka, “Introductory Chapter: Electrospinning-smart Nanofiber Mats,” in Electrospinning Method Used to Create Functional Nanocomposites Films, InTech, 2018.
  20.  W. Matysiak, T. Tański, and W. Smok, “Study of optical and dielectric constants of hybrid SnO2 electrospun nanostructures,” Appl. Phys. A Mater. Sci. Process., vol. 126, no. 2, p. 115, Feb. 2020.
  21.  Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, May 2008.
  22.  S.S. Mali et al., “Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells,” Nanoscale, vol. 10, no. 17, pp. 8275–8284, May 2018.
  23.  K. Zhang et al., “An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction,” J. Electroanal. Chem., vol. 781, pp. 198–203, Nov. 2016.
  24.  F. Li, T. Zhang, X. Gao, R. Wang, and B. Li, “Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor,” Sensors Actuators, B Chem., vol. 252, pp. 822–830, 2017.
  25.  Z. Jiang et al., “Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers,” Ceram. Int., vol. 42, no. 14, pp. 15881– 15888, Nov. 2016.
  26.  J.Y. Cheong, C. Kim, J. W. Jung, K.R. Yoon, and I.D. Kim, “Porous SnO2-CuO nanotubes for highly reversible lithium storage,” J. Power Sources, vol. 373, pp. 11–19, Jan. 2018.
  27.  Y.Y. Li, J.G. Wang, H.H. Sun, W. Hua, and X.R. Liu, “Heterostructured SnS2/SnO2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production,” Int. J. Hydrogen Energy, vol. 43, no. 31, pp. 14121–14129, Aug. 2018.
  28.  Z. Huang, Z. Chen, S. Ding, C. Chen, and M. Zhang, “Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification,” Mater. Lett., vol. 219, pp. 19–22, May 2018.
  29.  K. Wang and J. Huang, “Natural cellulose derived nanofibrous Ag-nanoparticle/SnO2/carbon ternary composite as an anodic material for lithium-ion batteries,” J. Phys. Chem. Solids, vol. 126, pp. 155–163, Mar. 2019.
  30.  S. Javanmardi, S. Nasresfahani, and M.H. Sheikhi, “Facile synthesis of PdO/SnO2/CuO nanocomposite with enhanced carbon monoxide gas sensing performance at low operating temperature,” Mater. Res. Bull., vol. 118, Oct. 2019.
  31.  Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, “Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, May 2008.
  32.  W.Q. Li et al., “Synthesis of hollow SnO2 nanobelts and their application in acetone sensor,” Mater. Lett., vol. 132, pp. 338–341, Oct. 2014.
  33.  L. Cheng et al., “Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties,” Mater. Lett., vol. 131, pp. 23–26, Sep. 2014.
  34.  L. Liu et al., “High toluene sensing properties of NiO-SnO2 composite nanofiber sensors operating at 330°C,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 448–454, Dec. 2011.
  35.  S.H. Yan et al., “Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance,” Sensors Actuators, B Chem., vol. 221, pp. 88–95, Jul. 2015.
  36.  F. Li, X. Gao, R. Wang, T. Zhang, and G. Lu, “Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor,” Sensors Actuators, B Chem., vol. 248, pp. 812–819, 2017.
  37.  S.W. Choi, J. Zhang, K. Akash, and S.S. Kim, “H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers,” Sensors Actuators, B Chem., vol. 169, pp. 54–60, Jul. 2012.
  38.  X. Xu et al., “Effects of Al doping on SnO2 nanofibers in hydrogen sensor,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 858–863, Dec. 2011.
  39.  S.M. Hwang et al., “A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries,” Nano Energy, vol. 10, pp. 53–62, Nov. 2014.
  40.  W. Wang et al., “Carbon-coated SnO2@carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries,” Mater. Chem. Phys., vol. 223, pp. 762–770, Feb. 2019.
  41.  J. Zhu, G. Zhang, X. Yu, Q. Li, B. Lu, and Z. Xu, “Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries,” Nano Energy, vol. 3, pp. 80–87, Jan. 2014.
  42.  Q. Wali, A. Fakharuddin, I. Ahmed, M.H. Ab Rahim, J. Ismail, and R. Jose, “Multiporous nanofibers of SnO2 by electrospinning for high efficiency dye-sensitized solar cells,” J. Mater. Chem. A, vol. 2, no. 41, pp. 17427–17434, Nov. 2014.
  43.  T. Tański, W. Matysiak, and Ł. Krzemiński, “Analysis of optical properties of TiO2 nanoparticles and PAN/TiO2 composite nanofibers,” Mater. Manuf. Process., vol. 32, no. 11, pp. 1218–1224, Aug. 2017.
  44.  W. Matysiak, T. Tański, P. Jarka, M. Nowak, M. Kępińska, and P. Szperlich, “Comparison of optical properties of PAN/TiO2, PAN/ Bi2O3, and PAN/SbSI nanofibers,” Opt. Mater. (Amst)., vol. 83, pp. 145–151, Sep. 2018.
  45.  T. Tański, W. Matysiak, D. Kosmalska, and A. Lubos, “Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 2, pp. 151–156, Apr. 2018.
  46.  W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process and characterization of electrospun PVP/ZnO NPs nanofibers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 193–200, 2019.
  47.  W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process, characterization and optical investigation of amorphous 1D zinc oxide nanostructures,” Appl. Surf. Sci., vol. 442, pp. 382–389, Jun. 2018.
  48.  J. Muangban and P. Jaroenapibal, “Effects of precursor concentration on crystalline morphologies and particle sizes of electrospun WO3 nanofibers,” Ceram. Int., vol. 40, no. 5, pp. 6759–6764, Jun. 2014.
  49.  W. Matysiak and T. Tański, “Analysis of the morphology, structure and optical properties of 1D SiO2 nanostructures obtained with sol-gel and electrospinning methods,” Appl. Surf. Sci., vol. 489, pp. 34–43, Sep. 2019.
  50.  O.V. Otieno et al., “Synthesis of TiO2 nanofibers by electrospinning using water-soluble Ti-precursor,” J. Therm. Anal. Calorim., vol. 139, no. 1, pp. 57–66, Jan. 2020.
  51.  N. Dharmaraj, C.H. Kim, K.W. Kim, H.Y. Kim, and E.K. Suh, “Spectral studies of SnO2 nanofibres prepared by electrospinning method,” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., vol. 64, no. 1, pp. 136–140, May 2006.
  52.  S.R. Ch, L. Zhang, T. Kang, Y. Lin, Y. Qiu, and S.R. A, “Annealing impact on the structural and optical properties of electrospun SnO2 nanofibers for TCOs,” Ceram. Int., vol. 44, no. 5, pp. 4586–4591, Apr. 2018.
  53.  S. Das, S. Kar, and S. Chaudhuri, “Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process,” J. Appl. Phys., vol. 99, no. 11, p. 114303, Jun. 2006.
  54.  N.S. Mohammad, “Understanding quantum confinement in nanowires: Basics, applications and possible laws,” J. Phys.-Condens. Matter, vol. 26, no. 42. Institute of Physics Publishing, 22-Oct-2014.
Go to article

Authors and Affiliations

Tomasz Tański
1
ORCID: ORCID
Weronika Smok
1
ORCID: ORCID
Wiktor Matysiak
1

  1. Department of Engineering Material and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to produce a thin SnO2 film by a technique combining the sol-gel method and electrospinning from a solution based on polyvinylpyrrolidone and a tin chloride pentahydrate as a precursor. The spinning solution was subjected to an electrospinning process, and then the obtained nanofiber mats were calcined for 10 h at 500°C. Then, the scanning electron microscopy morphology analysis and chemical composition analysis by X-ray microanalysis of the manufactured thin film was performed. It was shown that an amorphous-crystalline layer formed by the SnO2 nanofiber network was obtained. Based on the UV-Vis spectrum, the width of the energy gap of the obtained layer was determined.

Go to article

Authors and Affiliations

W. Matysiak
T. Tański
W. Smok
S. Polishchuk
Download PDF Download RIS Download Bibtex

Abstract

Results of scientific researches show the trend of active using nitrides and borides of transition

metals and their combination in developing protective materials. While single elements

nitrides have been well studied, their multilayer modifications and combinations require

more detailed study. Physical-mechanical properties and structural-phase state of multilayer

coating according to the deposition conditions is an important task for the study.

It will be the analysis of physical-mechanical and electrical properties of coatings based on

refractory metals nitrides, their structure and phase composition and surface morphology

depending on the parameters of condensation. It was established the structure and behavior

of nano scale coatings based on refractory metals nitrides (Ti, Zr) depending on the size

of nano grains, texture, stress occurring in coatings.

Go to article

Authors and Affiliations

Anton Panda
Konstiantyn Dyadyura
Tatyana Hovorun
Oleksandr Pylypenko
Marina Dunaeva
Iveta Pandova
Download PDF Download RIS Download Bibtex

Abstract

High strength tire cord steel is extensively used in radial ply tyres as the framework material, but the presence of brittle single titanium inclusions or complex titanium inclusions can cause failure of the wires and jeopardize their performance in production. In order to provide a key guidance on the control of titanium inclusions, it is necessary to clarify their formation mechanism during solidification. In the present work, the thermodynamic calculations were employed for an elaboration on their formation mechanism, combined with the industrial test. The TiN–MnS complex inclusions observed by SEM–EDS shows that the internal corresponds to TiN and the external is MnS. Thermodynamic calculations based on the microsegregation model indicate that MnS forms first, which can act as a nucleation site for the co–deposit of TiN in the mushy zone. As the MnS inclusions have a better deformation than that of TiN inclusions, then the TiN inclusions are wrapped by the MnS inclusions, generating TiN–MnS complex inclusions after rolling.
Go to article

Bibliography

[1] Abushosha, R., Vipond, R. & Mintz, B. (1991). Influence of titanium on hot ductility of as cast steels. Materials Science & Technology. 7(7), 613-621.
[2] Chen, Z., Li, M., Wang, X., He, S. & Wang, Q. (2019). Mechanism of floater formation in the mold during continuous casting of Ti-stabilized austenitic stainless steels. Metals. 9, 635-649.
[3] Karmakar, A., Kundu, S., Roy, S., Neogy, S., Srivastava, D. & Chakrabarti, D. (2014). Effect of microalloying elements on austenite grain growth in Nb–Ti and Nb–V steels. Materials Science and Technology. 30(6), 653-664.
[4] Reyes-Calderón, F., Mejía, I., Boulaajaj, A. & Cabrera, J.M. (2013). Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high–Mn austenitic twinning induced plasticity (TWIP) steel. Materials Science and Engineering: A. 560, 552-560.
[5] Chen, C.Y., Jiang, Z.H., Li, Y., Zheng, L.C., Huang, X.F. & Yang, G. (2019). State of the art in the control of inclusions in tire cord steels and saw wire steels–A Review. Steel Research International. 6, 1-13.
[6] Lei, J.L., Zhao, D.N., Fu, Y.J., & Xu, X.F. (2019). Research on the characterization of Ti inclusions and their precipitation behavior in tire cord steel. Archives of Foundry Engineering. 19(3), 33-37.
[7] Cui, H.Z. & Chen, W. Q. (2012). Effect of boron on morphology of inclusions in tire cord steel. Journal of Iron and Steel Research International. 19( 4), 22-27.
[8] Wu, S., Liu, Z., Zhou, X., Yang, H. & Wang, G. (2017). Precipitation behavior of Ti in high strength steels. Journal of Central South University. 24(12), 2767-2772.
[9] Petit, J., Sarrazin-Baudoux, C. & Lorenzi, F. (2010). Fatigue crack propagation in thin wires of ultrahigh strength steels. Procedia Engineering. 2, 2317-2326.
[10] Liu, H.Y., Wang, H.L., Li, L., Zheng, J.Q., Li, Y.H. & Zeng, X.Y. (2011). Investigation of Ti inclusions in wire cord steel. Ironmaking and Steelmaking. 38(1), 53-58.
[11] Cai, X.F., Bao, Y.P., Wang, M., Lin, L., Dai, N.C. & Gu, C. (2015). 69Investigation of precipitation and growth behavior of Ti inclusions in tire cord steel. Metallurgical Research and Technology. 112(4), 407-418.
[12] Lei, J.L., Xue, Z.L., Jiang, Y.D., Zhang, J. & Zhu, T.T. (2012). Study on TiN precipitation during solidification for hypereutectoid tire cord steel. Metalurgia International. 17(9), 10-15.
[13] Chen, J.X. (2010). Common charts and databook for steelmaking. (2nd ed.). Beijing: Metallurgical Industry Press.
[14] Clyne, T.W., Wolf, M. & Kurz, W. (1982). The effect of melt composition on solidification cracking of steel with particular reference to continuous casting. Metallurgical and Materials Transactions B. 13(2), 259-266.
[15] Wada, H., & Pehlke, R.D. (1985). Nitrogen solubility and nitride formation in austenitic Fe–Ti alloys. Metallurgical and Materials Transactions B. 16(4), 815-822.
[16] Ma, Z., & Janke, D. (1998). Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ International. 38(1), 46-52.
[17] Darken, L.S. (1967). Thermodynamics of binary metallic solutions. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers. 239(1), 80-89.
[18] Yoshikawa, T., & Morita, K. (2007). Influence of alloying elements on the thermodynamic properties of titanium in molten steel. Metallurgical and Materials Transactions B. 38(4), 671-680.
[19] Kim, W., Jo, J., Chung, T., Kim, D. & Pak, J. (2007). Thermodynamics of titanium, nitrogen and TiN formation in liquid iron. ISIJ International. 47(8), 1082-1089.
[20] Ma, W.J., Bao, Y.P., Zhao, L.H., & Wang, M. (2014). Control of the precipitation of TiN inclusions in gear steels. International Journal of Minerals Metallurgy and Materials. 21(3), 234-239.
[21] Huang, X.H. (2001). Theory of Iron and Steel Metallurgy. (3rd ed.). Beijing: Metallurgical Industry Press.
[22] Won, Y.M. & Thomas, B.G. (2011). Simple model of micro–segregation during solidification of steels. Metallurgical and Materials Transactions A. 32(7), 1755-1767.
[23] Ohnaka, I. (1986). Mathematical-analysis of solute redistribution during solidification with diffusion in solid–phase. ISIJ International. 26(12), 1045-1051.
[24] Maugis, P. & Gouné, M. (2005). Kinetics of vanadium carbonitride precipitation in steel: a computer model. Acta Materialia. 53(12), 3359-3367.
[25] Manohar, P.A., Dunne, D.P., Chandra, T. & Killmore, C.R. (2007). Grain growth predictions in microalloyed steels. ISIJ International, 36(2), 194-200.
[26] Choudhary, S.K. & Ghosh, A. (2009). Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ International. 49(12), 1819-1827.
[27] Gao, S., Wang, M., Guo, J.L., Wang, H. & Bao, Y.P. (2019). Extraction, distribution, and precipitation mechanism of TiN–MnS complex inclusions in Al-killed titanium alloyed interstitial free steel. Metals and Materials International. 12, 1-9.
Go to article

Authors and Affiliations

Jialiu Lei
1
Xiumin Wang
1
Dongnan Zhao
1
Yongjun Fu
1

  1. Hubei Polytechnic University, China
Download PDF Download RIS Download Bibtex

Abstract

The lack of room-temperature ductility of high-strength TiAl-based alloys called for complicated high temperature processing limiting their application areas. Introduction of additive manufacturing (AM) methods allowed to circumvent this disadvantage, but entailed microstructure refinement affecting, among the others, their oxidation resistance. The dry-air high temperature oxidation processing of TiAl-based alloys is relatively well covered for coarse grained materials, but to what extent the TiAl alloys are affected by the changes caused by the AM remains to be found out. Additionally, the role of nitrogen during these processes was to large extent omitted in previous works. Within the present experiment, the mould cast (MC) and the electron beam melted (EBM) Ti-48Al-2Nb-0.7Cr-0.3Si (at. %) RNT650 alloys were dry-air oxidized at 650°C for 1000 h. The TEM/EDS investigations allowed to confirm that the scale formed during such treatment consists of the layers occupied predominantly by TiO2+Al2O3/TiO2/Al2O3 sequence. Additionally, it was shown that N diffuses to the sub-scale and reacts with the substrate forming two distinct discontinuous sub-layers of α2-Ti3Al(N) and TiN. The scale over EBM was noticeably less porous and nitrogen penetration of the substrate was more extensive, while the MC showed higher susceptibility to local sub-scale oxidation.
Go to article

Authors and Affiliations

J. Morgiel
1
ORCID: ORCID
T. Dudziak
2
ORCID: ORCID
L. Maj
1
ORCID: ORCID
A. Kirchner
3
M. Pomorska
1
ORCID: ORCID
B. Klöden
3
T. Weissgärber
3
D. Toboła
2
ORCID: ORCID

  1. Polish Academy of Science, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059-Kraków, Poland
  2. Łukasiewicz Research Network, Kraków Institute of Technology, 73 Zakopianska Str, 30-418 Kraków, Poland
  3. Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Institutsteil Dresden Winterbergstrasse 28, 01277 Dresden, Germany
Download PDF Download RIS Download Bibtex

Abstract

The most important feature of bells is their sound. Their clarity and beauty depend, first of all, on the bell’s geometry - particularly the shape of its profile and the mechanical properties of alloy. Bells are the castings that work by emitting sound in as-cast state. Therefore all features that are created during melting, pouring, solidification and cooling processes will influence the bell's sound. The mechanical properties of bronze depend on the quality of alloy and microstructure which is created during solidification and depend on its kinetics. Hence, if the solidification parameters influence the alloy’s properties, how could they influence the frequencies of bell`s tone? Taking into account alterable thickness of bell's wall and differences in microstructure, the alloy's properties in bell could be important. In the article authors present the investigations conducted to determine the influence of cooling kinetics on microstructure of bronze with 20 weight % tin contents.

Go to article

Authors and Affiliations

D. Bartocha
C. Baron
J. Suchoń
Download PDF Download RIS Download Bibtex

Abstract

The exudation layer seriously affects the properties and the surface finish of the tin bronze alloy. The effective control of the exudation thickness is important measure for improving the properties of the alloy. In order to study the influence of process parameters on the thickness of exudate layer, the tin bronze alloy was prepared by continuous unidirectional solidification technology at different process parameters. The microstructure of the continuous unidirectional solidification tin bronze alloy was analyzed. The effect of process parameters on microstructure and chemical compositions was studied by orthogonal experiment. The results show that there exists an exudation layer on the surface of the continuous unidirectional solidification tin bronze alloy, and the exudation is mainly composed of a tin-rich precipitated phase. It indicates that the continuous casting speed is the main factor affecting the thickness of exudation layer, followed by mold temperature, melt temperature, cooling water temperature and cooling distance.

Go to article

Authors and Affiliations

Jihui Luo
Fang He
Download PDF Download RIS Download Bibtex

Abstract

The most important feature of bells is their sound. Its clarity and beauty depend, first of all, on the bell’s geometry - particularly the shape

of its profile, but also on the quality of alloy used to its cast. Hence, if the melting and pouring parameters could influence the alloy’s

properties, what influence they would have on the frequencies of bell’s tone. In the article authors present their own approaches to find

answers on that and more questions.

Go to article

Authors and Affiliations

D. Bartocha
C. Baron
Download PDF Download RIS Download Bibtex

Abstract

The purpose of surface matching is to determine transformation parameters without known corresponding points for two data sets of spatial point coordinates obtained with use of different sensors. Instead of different features such as points of interest, lines, surface patches in the TIN (Triangle Irregular Network) or DEM model are used. The paper presents an approach of using inertial moments of TIN models generated from two data sets of same terrain for surface matching. The inertial moments could easily be calculated for each triangle in the TIN using formulae given. Three moment invariants/,./,,,,"/""'' that are used as the features of high level for surface matching are defined.
Go to article

Authors and Affiliations

Chinh Ke Luong
Download PDF Download RIS Download Bibtex

Abstract

The mold temperature of the downward continuous unidirectional solidification (CUS) cannot be controlled higher than the liquidus of alloys to be cast. Therefore, the continuous casting speed becomes the main parameter for controlling the growth of columnar crystal structure of the alloy. In this paper, the tin bronze alloy was prepared by the downward CUS process. The microstructure evolution of the CUS tin bronze alloy at different continuous casting speeds was analysed. In order to further explain the columnar crystal evolution, a relation between the growth rate of columnar crystal and the continuous casting speed during the CUS process was built. The results show that the CUS tin bronze alloy mainly consists of columnar crystals and equiaxed crystals when the casting speed is low. As the continuous casting speed increases, the equiaxed crystals begin to disappear. The diameter of the columnar crystal increases with the continuous casting speed increasing and the number of columnar crystal decreases. The growth rate of columnar crystal increases with increasing of the continuous casting speed during CUS tin bronze alloy process.

Go to article

Authors and Affiliations

Jihui Luo
Download PDF Download RIS Download Bibtex

Abstract

Casting is one method of making metal components that are widely used in industry and up to date. The sand casting method is used due to its simplicity, ease of operation, and low cost. In addition, the casting method can produce cast products in various sizes and is well-suited for mass production. However, the disadvantage of casting, especially gravity casting, is that it has poor physical and mechanical properties.
Tin bronze Cu20%wt.Sn is melted in a furnace, then poured at a temperature of 1100°C into a sand mold. The cast product is a rod with 400 mm in length, 10 mm in thickness, and 10 mm in width. The heat treatment mechanism is carried out by reheating the cast specimen at a temperature of 650°C, holding it for 4 hours, and then rapid cooling. The specimens were observed microstructure, density, and mechanical properties include tensile strength and bending strength. The results showed that there was a phase change from α + δ to α + β phase, an increase in density as a result of a decrease in porosity and a coarse grain to a fine grain. In addition, the tensile strength and bending strength of the Cu20wt.%Sn alloy were increased and resulted in a more ductile alloy through post-cast heat treatment.
Go to article

Bibliography

[1] C.D. Association, (1992). Copper Development Association Equilibrium Diagrams the major types of phase transformation.
[2] He, Z., Jian, C.A.O. & Ji-cai, F. (2009). Microstructure and mechanical properties of Ti6Al4V / Cu-10Sn bronze diffusion-bonded joint. Transaction Nonferrous Metals Society of China. 19, 414-417.
[3] Chen, X., Wang, Z., Ding, D., Tang, H., Qiu, L., Luo, X. & Shi, G. (2015). Strengthening and toughening strategies for tin bronze alloy through fabricating in-situ nanostructured grains. Material and Design. 1-31. ISSN: 0261-3069.
[4] Kohler, F., Campanella, T., Nakanishi, S. & Rappaz, M. (2008). Application of single pan thermal analysis to Cu – Sn peritectic alloys. Acta Materialia. 56, 1519-1528.
[5] Taslicukur, Z., Altug, G.S., Polat, S., Atapek, Ş.H., Turedi E. (2012). A Microstructural study on CuSn10 bronze produced by sand and investment casting techniques. In 21st International Conference on Metallurgy and Materials METAL 2012, 23-25 May 2012 . Brno, Czech Republic, EU.
[6] Goodway M (1992). Metals of Music. Materials Characterization. 29, 177-184.
[7] Audy J, Audy K (2008). Analysis of bell materials: Tin bronzes. China Foundry. 5, 199-204.
[8] Debut, V., Carvalho, M., Figueiredo, E., Antunes, J. & Silva, R. (2016). The sound of bronze: Virtual resurrection of a broken medieval bell. Jurnal of Cultural Heritage. 19, 544-554.
[9] S.Slamet, Suyitno & Kusumaningtyas, I. (2019). Effect of composition and pouring temperature of Cu(20-24)wt.%Sn by sand casting on fluidity and mechanical properties, Journal of Mechanical Engineering and Science. 13(4), 6022-6035.
[10] S. Slamet, Suyitno and Kusumaningtyas, I. (2019). Effect of composition and pouring temperature of Cu-Sn alloys on the fluidity and microstructure by investment casting. IOP Conf. Series: Materials Science and Engineering. 547, 1-8.
[11] S. Slamet, Suyitno, Kusumaningtyas, I. & Miasa, I.M. (2021). Effect of high-tin bronze composition on physical, mechanical, and acoustic properties of gamelan materials. Archives of Foundry Engineering. 21(1), 137-145.
[12] Fletcher, N. (2012). Materials and musical instruments. Acoustics Australia. 40, 30-134.
[13] Sumarsam, (2002). Introduction to javanese gamelan (Javanese Gamelan-Beginners). Syllabus. 451, 1-28.
[14] Salonitis. K., Jolly. M. & Zeng, B. (2017). Simulation based energy and resource efficient casting process chain selection. A case study. Procedia Manufacturing. 8, 67-74.
[15] Sulaiman, S. & Hamouda, A.M.S. (2001). Modeling of the thermal history of the sand casting process. Journal of Materials Processing Technology. 113, 245-250.
[16] Kim, E., Cho, G., Oh, Y. & Junga, Y. (2016). Development of a high-temperature mold process for sand casting with a thin wall and complex shape. Thin Solid Films. 620, 70-75.
[17] S. Slamet, Suyitno, Kusumaningtyas, I. (2019). Forging process on gamelan bar tin bronze Cu-25 wt. % Sn post casting deformation to changes in microstructure, density, hardness, and acoustic properties. IOP Conf. Series: Materials Science and Engineering. 673, 1-9.
[18] S. Slamet, Suyitno, & Kusumaningtyas, I. (2020). Comparative study of bonang gamelan musical instrument between hot forging and Post Cast Heat Treatment / PCHT on microstructure and mechanical properties. IOP Conf. Series: Materials Science and Engineering. 1430, 1-9.
[19] Morando, C., Fornaro, O., Garbellini, O. & Palacio, H. (2015). Fluidity on metallic eutectic alloys. Procedia Materials Science. 8, 959-967.
[20] Pang, S., Wu, G., Liu, W., Sun, M., Zhang, Y., Liu, Z. & Ding, W. (2013). Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg-10Gd-3Y-0.5 Zr magnesium alloy. Materials Science Engineering A. 562, 152-160.
[21] Chuaiphan, W. & Srijaroenpramong, L. (2013). The Effect of Tin and heat treatment in brass on microstructure and mechanical properties for solving the cracking of nut and bolt. Applied Mechanics and Materials. 389, 237-244.
[22] Sláma, P., Dlouhý, J. & Kövér, M. (2014). Influence of heat treatment on the microstructure and mechanical properties of aluminium bronze. Materials and Technology. 48(4), 599-604.
[23] Hanson. D, Pell-Walpole, W.T. (1951). Chill-Cast Tin Bronzes. 1-368
[24] Sanchez, J.A.B.F., Bolarin, A.M. , Tello, A. & Hernandez, L.E. (2006). Diffusion at Cu / Sn interface during sintering process. Materials Science of Technology. 22, 590-596.
[25] Gupta, R., Srivastava, S., Kishor, N. & Panthi, S.K. (2016). High leaded tin bronze processing during multi-directional forging : Effect on microstructure and mechanical properties. Materials Science Engineering A. 654, 282-291.

Go to article

Authors and Affiliations

S. Slamet
1
S. Suyitno
2
I. K. Indraswari Kusumaningtyas
3

  1. Universitas Muria Kudus, Indonesia
  2. Universitas Tidar Magelang, Indonesia
  3. Universitas Gadjah Mada, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effect of tin on the crystallization process, microstructure and hardness of cast iron with compacted (vermicular) graphite. The compacted graphite was obtained with the use of magnesium treatment process (Inmold technology). The lack of significant effect of tin on the temperature of the eutectic transformation has been demonstrated. On the other hand, a significant decrease in the eutectoid transformation temperature with increasing tin concentration has been shown. It was demonstrated that tin narrows the temperature range of the austenite transformation. The effect of tin on the microstructure of cast iron with compacted graphite considering casting wall thickness has been investigated and described. The carbide-forming effect of tin in thin-walled (3 mm) castings has been demonstrated. The nomograms describing the microstructure of compacted graphite iron versus tin concentration have been developed. The effect of tin on the hardness of cast iron was given.

Go to article

Authors and Affiliations

Grzegorz Gumienny
ORCID: ORCID
B. Kurowska
ORCID: ORCID
P. Fabian
Download PDF Download RIS Download Bibtex

Abstract

Among different bearing materials, copper-based alloys are the most important source for bearing and bushing applications. In this work, the tribological behavior of a leaded tin bronze (Cu-22Pb-4Sn) against an EN31 Steel for various loads (20 N, 70 N, 120 N) and different sliding velocity (1 m/s, 3 m/s, 5 m/s) at 3000 m sliding distance is performed using a pin on disk tribometer. Irrespective of all loads and sliding velocity, a higher specific wear rate is observed at 1 m/s and 120 N that fails to facilitate the formation of lubricating film, whereas a lower specific wear rate is evident when the sliding velocity is increased to 5 m/s. This is attributed to the formation of a stable oxide layer that has been confirmed through the Energy dispersive X-ray spectroscopy analysis and Scanning electron microscopy. The coefficient of friction is observed in reducing trend from 0.69 to 0.48 for the increasing load (70 N, 120 N) and sliding velocity (3 m/s and 5 m/s) due to stable thin oxide film formation. Also, the increase in frictional force and loading the interacting surface temperature is increased to a maximum of 102°C. The Grey relational analysis indicates that the optimal parameters for the minimum specific wear rate and coefficient of friction is 120 N and 5 m/s that has been confirmed with experimental analysis.
Go to article

Bibliography

[1] R.F. Schmidt, D.G. Schmidt, (10Ed.), Selection and application of copper alloy castings: Metals Handbook, ASM International, USA (1993).
[2] H . Turhan, M. Aksoy, V. Kuzucu, M.M. Yildirim, J. Mater. Process. Technol. 114 (3), 207-211 (2001). DOI: https://doi.org/10.1016/S0924-0136(01)00569-6
[3] S . Equey, A. Houriet, S. Mischler, Wear. 273 (1), 9-16 (2011). DOI: https://doi.org/10.1016/j.wear.2011.03.030
[4] G .C. Pratt, Powder Metall. 12 (24), 356-385 (2014). DOI: https://doi.org/10.1179/pom.1969.12.24.007
[5] B.K. Prasad, Can. Metall. Q. 51 (2), 210-220 (2013). DOI: https://doi.org/10.1179/1879139511Y.0000000030
[6] B. Unlu, Bull. Mater. Sci. 32 (4), 451-457 (2009). DOI: https://doi.org/10.1007/s12034-009-0066-0
[7] V. Ruusila, T. Nyyssonen, M. Kallio, P. Vuorinen, A. Lehtovaara, K. Valtonen, V.T. Kuokkala, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 227 (8), 878-887 (2013). DOI: https://doi.org/10.1177/1350650113478706.
[8] J.P. Pathak, S.N. Tiwari, Wear 155 (1), 37-47 (1992). DOI: https://doi.org/10.1016/0043-1648(92)90107-J
[9] Jan Gerkema, Wear 102 (3), 241-252 (1985). DOI: https://doi.org/10.1016/0043-1648(85)90222-4
[10] B. Unlu, E. Atik, J. Alloys Compd. 489 (1), 262-268 (2010). DOI: https://doi.org/10.1016/j.jallcom.2009.09.068
[11] B.K. Prasad, A.K. Patwardhan, A.H. Yegneswaran, Mater. Sci. Technol. 12 (5), 427-435 (1996). DOI: https://doi.org/10.1179/026708396790165885
[12] J.P. Pandey, B.K. Prasad, Metall. Mater. Trans. A. 29 (4), 1245- 1255 (1998). DOI: https://doi.org/10.1007/s11661-998-0251-6
[13] S . Murphy, T. Savaskan, Wear 98, 151-161 (1984). DOI: https://doi.org/10.1016/0043-1648(84)90224-2
[14] B.K. Prasad, Metall. Mater. Trans. A. 28 (3), 1245-1255 (1997). DOI: https://doi.org/10.1007/s11661-997-0067-9
[15] M. Aksoy, V. Kuzucu, H. Turhan, J. Mater. Process. Technol. 124 (1-2), 113-119 (2002). DOI: https://doi.org/10.1016/S0924-0136(02)00137-1
[16] A.W.J. De Gee, G.H.G. Vaessen, A. Begelinger, ASLE Transactions. 12 (1), 44-54 (2008). DOI: https://doi.org/10.1080/05698196908972245
[17] M. Nursoy, C. Oner, I. Can, Mater. Des. 29 (10), 2047-2051(2008). DOI: https://doi.org/10.1016/j.matdes.2008.04.020
[18] G . Cui, M. Niu, S. Zhu, J. Yang, Q. Bi, Tribol. Lett. 48 (2), 111- 122 (2012). DOI: https://doi.org/10.1007/s11249-012-0007-8
[19] B.K. Prasad, J. Mater. Eng. Perform, 21 (10), 2155-2164 (2012). DOI: https://doi.org/10.1007/s11665-012-0139-x
[20] B. Juszczyk, J. Kulasa, S. Malara, M. Czepelak, W. Malec, B. Cwolek, L. Wierzbicki, Arch. Metall. Mater. 59 (2), 615-620 (2014). DOI: https://doi.org/10.2478/amm-2014-0101
[21] F . Summer, F. Grun, M. Offenbecher, S. Taylor, Tribol. Int. 131, 238- 250 (2019). DOI: https://doi.org/10.1016/j.triboint.2018.10.042
[22] M. Kestursatya, J.K. Jim, P.K. Rohatgi, Mater. Sci. Eng., A. 339 (1-2), 150-158 (2003). DOI: https://doi.org/10.1016/S0921-5093(02)00114-4
Go to article

Authors and Affiliations

D. Dinesh
1
ORCID: ORCID
A. Megalingam
1
ORCID: ORCID

  1. Bannari Amman Institute of Technology, Department of Mechanical Engineering, Sathyamangalam, Erode-638401, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

The electrical contactors play a crucial role in closing the circuit in many power distribution components like overhead lines, underground cables, circuit breakers, transformers, and control systems. The failure in these components mainly occurs due to the break-down of contactors due to the continuous opening and closing action of contacts. Silver (Ag)-based oxide contact materials are widely used in practice, among which silver tin oxide (AgSnO2) is most common. An attempt is made in increasing the performance of AgSnO2, by adding Tungsten Oxide (WO3) in various weight proportions, thus finding the optimal proportion of AgSnO2WO3 to have increased mechanical and electrical performances. All the composite samples are fabricated in-house using powder metallurgy process. The assessment of physical and electrical properties namely, density, hardness, porosity, and electrical conductivity, showed that 90%Ag-8.5%SnO2-1.5%WO3 composite yielded superior results. With help of morphological tests, wear characteristics are also investigated, which showed that 90%Ag-8.5%SnO2-1.5%WO3 composite has a wear coefficient of 0.000227 and a coefficient of friction of 0.174 at an optimized load of 10 N and sliding velocity of 0.5 mm/s.
Go to article

Bibliography

[1] P.B. Joshi, N.S.S. Murti, V.L. Gadgeel, V.K. Kaushik, J. Mater. Sci. Lett. 14 (16), 1099-1101 (1995). DOI: https://doi.org/10.1007/BF00423372
[2] P.B. Joshi, P. Ramakrishnan, Materials for electrical and electronic contacts: processing, properties, and applications, Science Pub Inc. (2004).
[3] Z. Ying, W. Jingqin, K. Huiling, IEEE T. Comp. Pack. Man. 9 (5), 864-870 (2018). DOI: https://doi.org/10.1109/TCPMT.2018.2882237
[4] P.B. Joshi, V.J. Rao, B.R. Rehani, A. Pratap, Silver-Zinc oxide electrical contact materials by mechanochemical synthesis route (2007).
[5] B. Holm, Northwest coast Indian art: An analysis of form. University of Washington Press (2017).
[6] O. Nilsson, F. Hauner, D. Jeannot, Replacement of AgCdO by AgSnO/sub 2/in DC contactors, In Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts. (pp. 70-74). IEEE (2004 September). DOI: https://doi.org/10.1109/HOLM.2004.1353097
[7] D .A. Romanov, S.V. Moskovskii, E.A. Martusevich, E.A. Gayevoy, V.E. Gromov, Structural-phase state of the system “CdO-Ag coating/copper substrate” formed by electroexplosive method. Metalurgija 57 (4), 299-302 (2018).
[8] P.G. Slade, R.K. Smith, Electrical switching life of vacuum circuit breaker interrupters. In Electrical Contacts-2006. Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts (pp. 32- 37). IEEE (2006, September). DOI: https://doi.org/10.1109/HOLM.2006.284061
[9] S.H. Choi, B. Ali, S.Y. Kim, S.K. Hyun, S.J. Seo, K.T. Park, J.S. Park, Int. J. Appl. Ceram. Tec. 13 (2), 258-264 (2016). DOI: https://doi.org/10.1111/ijac.12478
[10] C. Wu, Q. Zhao, N. Li, H. Wang, D. Yi, W. Weng, J. Alloy Compd. 766, 161-177 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.06.317
[11] J.L. Wintz, S. Hardy, Design guideline of contactors: optimal use of assembled contacts. In 2013 IEEE 59th Holm Conference on Electrical Contacts (Holm 2013) (pp. 1-10). IEEE (2013, September). DOI: https://doi.org/10.1109/HOLM.2013.6651406
[12] N.M. Talijan, V. Ćosović, J. Stajić-Trošić, A. Grujić, D. Živkovic, E. Romhanji, J. Min. Metall. B. 43 (2), 171-176 (2007). DOI: https://doi.org/10.2298/JMMB0702171T
[13] B. Rehani, P.B. Joshi, P.K. Khanna, J. Mater. Eng. Perform. 19 (1), 64-69 (2010). DOI: https://doi.org/10.1007/s11665-009-9437-3
[14] P.G. Slade, (Ed.), Electrical contacts: principles and applications, CRC Press (2017).
[15] M.W. Richert, J. Richert, A. Hotloś, P. Pałka, W. Pachla, M. Perek- Nowak, In Mater. Sci. Forum. 667, 145-150 (2011). DOI: https://doi.org/10.4028/www.scientific.net/MSF.667-669.145
[16] V. Ćosović, N. Talijan, D. Živković, D. Minić, Z. Živković, J. Min. Metall. B. 48 (1), 131-141 (2012).
[17] K. Wojtasik, W. Missol, Metal Powder Report 59 (7), 34-39 (2004). DOI: https://doi.org/10.1016/S0026-0657(04)00206-1
[18] M . Lungu, S. Gavriliu, T. Canta, M. Lucaci, E. Enescu, J. Optoelectron. Adv. M. 8 (2), 576 (2006).
[19] V. Ćosović, M.M. Pavlović, A. Cosovic, P. Vulić, M. Premović, D. Živković, N.M.Talijan, Sci. Sinter. 45 (2), 173-180 (2013). DOI: https://doi.org/10.2298/SOS1302173C
[20] N.M. Talijan, Zaštitamaterijala 52 (3), 173-180 (2011).
[21] M . Mustapha, F. Mustapha, O. Mamat, P. Hussain, Powder Metall. 54 (3), 343-353 (2011). DOI: https://doi.org/10.1179/003258909X12573447241581
[22] N.M. Talijan, V.R. Ćosović, A.R. Ćosović, D.T. Živković, Metallurgical and Materials Engineering 18 (4), 259-272 (2012).
[23] M . Braunovic. IEICE T. Electron. 92 (8), 982-991 (2009). DOI: https://doi.org/10.1587/transele.E92.C.982
[24] A . Dogariu, S. Sukhov, J. Sáenz, Nat. Photonics. 7 (1), 24-27 (2013). DOI: https://doi.org/10.1038/nphoton.2012.315
[25] M . Taher, F. Mao, P. Berastegui, A.M. Andersson, U. Jansson, Tribol. Int. 119, 680-687 (2018). DOI: https://doi.org/10.1016/j.triboint.2017.11.026
[26] F. Findik, H. Uzun, Mater. Design 24 (7), 489-492 (2003). DOI: https://doi.org/10.1016/S0261-3069(03)00125-0
[27] B.A. Wasmi, A.A. Al-Amiery, A.A.H. Kadhum, A.B. Mohamad, J. Nanomater. (2014).
[28] M . Lungu, S. Gavriliu, D. Patroi, M. Lucaci, Adv. Mat. Res. 23, 103-106 (2007). DOI: https://doi.org/10.4028/www.scientific.net/AMR.23.103
[29] M . Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, Optik 145, 169-180 (2017). DOI: https://doi.org/10.1016/j.ijleo.2017.07.049
[30] E . Harea, I. Lapsker, A. Laikhtman, L. Rapoport, L. Tribol, Lett. 52 (2), 205-212 (2013).
[31] S. Praveen Kumar, R. Parameshwaran, A. Ananthi, J. JenilJaba Sam, Arch. Metall. Mater. 62 (2017). DOI: https://doi.org/10.1515/amm-2017-0287
[32] S.P. Kumar, R. Parameshwaran, S.A Kumar, S. Nathiya, K. Heenalisha, Mater. Today-Proc. (2020). DOI: https://doi.org/10.1016/j.matpr.2020.05.666
[33] H . Li, X. Wang, Y. Xi, Y. Liu, X. Guo, Mater. Design. 121, 85-91 (2017). DOI: https://doi.org/10.1016/j.matdes.2017.02.059
[34] Mohd Shahadan Mohd Suan, Nurulhawa Ali Hasim, Mohd Edeerozey Abd Manaf, Mohd Rafie Johan, Chinese J. Phys. 55 (5), 1857-1864 (2017). DOI: https://doi.org/10.1016/j.cjph.2017.08.012
Go to article

Authors and Affiliations

S. Praveen Kumar
1
ORCID: ORCID
S.M. Senthil
1
ORCID: ORCID
R. Parameshwaran
1
ORCID: ORCID
R. Rathanasamy
1
ORCID: ORCID

  1. Kongu Engineering College, Erode, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

This study examines the optimal parameters for obtaining fluorine-doped SnO 2 (FTO) films with promising potential for photovoltaic applications. Due to its properties, tin oxide is used in a wide range of technologies, among which the manufacture of solar cells is one of the most important. Being doped with fluorine, tin dioxide becomes a good transparent and conductive electrode, suitable for solar cell applications. The chemical stability and low cost of the doped SnO 2 makes it an advantageous alternative to tin-doped indium oxide (ITO). Among the most important characteristics of FTO thin films are high photoconductivity under sunlight irradiation and strong UV absorption. The SnO 2 compound, doped with fluorine, exhibits a considerable chemical and physical stability, good electrical conductivity and high transmission (over 85%) in the visible range. The spray pyrolysis technique is the most preferable and efficient deposition method of fluorine-doped SnO2 thin films. This work aims to identify the optimal parameters for the spray pyrolysis of SnO 2:F films and to analyze the morphology, transparency and strength of as obtained films in relation to the doping amount in the precursor solution, spraying distance and film thickness.
Go to article

Authors and Affiliations

P. Lisnic
1
ORCID: ORCID
L. Hrostea
2
ORCID: ORCID
L. Leontie
1
ORCID: ORCID
M. Girtan
3
ORCID: ORCID

  1. Alexandru Ioan Cuza University of Iasi, Faculty of Physics Bulevardul Carol I, nr.11, 700506, Iasi, Romania
  2. Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, Research Center on Advanced Materials and Technologies, Science Department, Bulevardul Carol I, nr. 11, 700506 Iasi, Romania
  3. Angers University, Faculty of Sciences, Photonics Laboratory, (LPhiA) E.A. 4464, SFR Matrix, 2 Bd Lavoisier, 49000 Angers, France
Download PDF Download RIS Download Bibtex

Abstract

The goal of this paper is to measure the non-wetting to wetting transition temperatures of liquid tin on surfaces of different steel samples in vacuum with residual pressure of 10–8 bar. The experiments were conducted on four steels (C45, S103, CK60 and EN1.4034) of varying compositions using pure tin (99.99%) by the sessile drop method. Non-wetting to wetting transition (contact angle decreasing below 90°) by liquid tin was observed as function of increasing temperature in the range of 820-940 K for low alloyed steels C45, S103 and CK60, while it was considerably higher (around 1130 K) for high chromium EN1.4034 steel. It is concluded that at about the same temperatures, the surfaces of the steel samples are spontaneously deoxidized due to the combined effect of high temperature, low vacuum and C-content of steels. After the oxide layer is removed, the contact angles of liquid tin on steel surfaces were found in the range of 45-80° for low alloyed C45, S103 and CK60 steels and around 20° for high chromium EN1.4034 steel. These relatively high contact angle values compared to other metal/metal couples (such as liquid Cu on steels) are due to the formation of not fully metallic intermetallic compounds (FeSn and FeSn2) at the interface (such do not form in the Cu/Fe system).
Go to article

Authors and Affiliations

D. Varanasi
1
K.E. Aldawoudi
1
P. Baumli
1
D. Koncz-Horvath
1
G. Kaptay
1

  1. University of Miskolc, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, 3515 Miskolc-Egyetemvaros, Hungary
Download PDF Download RIS Download Bibtex

Abstract

High tin bronze alloy (Cu>17wt.%Sn) is commonly as raw material to fabricate musical instruments. Gamelan musical instruments in Indonesia are produced using tin bronze alloy raw materials. The tin bronze alloy used by each gamelan craftsman has a different tin composition, generally in the range of Cu(20-24) wt.% Sn. This study aims to investigate the effect of microstructure, density, and mechanical properties of Cu(20-24)wt.%Sn against the acoustic properties processed by the sand casting method. The material is melted in a crucible furnace until it reaches a pouring temperature of 1100ºC by the sand casting method. The specimens were subjected to microstructure observations, density and porosity as well as mechanical properties testing including tensile strength, bending strength, hardness, and modulus of elasticity. Mechanical properties data then used to calculate several parameters of acoustic properties including speed of sound (c), impedance (z) and radiation coefficient (R). Processes simulation using Finite Element Analysis (FEA) and Experiment Method Analysis (EMA) were carried out to determine acoustic properties including sound intensity, natural frequency and damping capacity.
The experimental result shows that the increase in tin composition in Cu(20-24) wt.% Sn changed the microstructure of coarse grains into dendrite-columned fine grains. Physical properties of density decrease, while porosity increases. Mechanical properties including tensile strength, modulus of elasticity, and bending strength decreased, while the hardness of the alloy increases. The calculation of acoustic parameters such as the speed of sound (c), impedance (z) and radiation coefficient (R) has decreased. Moreover, sound intensity (dB), natural frequency (Hz) and damping capacity also decrease with increasing tin composition. Hence, tin bronze alloy Cu20wt.%Sn is the recommended raw material for the manufacture of gamelan instruments through the sand casting method.
Go to article

Bibliography

[1] Sumarsam. (2002). Introduction to Javanese gamelan (Javanese gamelan-beginners). Wesleyan University. Middletown.
[2] Sutton, R.A. (2007). Gamelan: The Traditional Sounds of Indonesia (review). Asian Music. 38(1), 142-144.
[3] Suyanto, Tjokronegoro H.A, Merthayasa I.G.N. & Supanggah R. (2015). Acoustic parameter for javanese gamelan performance in pendopo mangkunegaran Surakarta. Procedia – Social and Behavioral Sciences. 184. 322-327.
[4] Goodway, M. (1992). Metals of music. Materials Characterization. 29. 177-184.
[5] Audy, J. & Audy, K. (2008). Analysis of bell materials: Tin bronzes. China Foundry. 5(3). 199-204.
[6] Debut, V. Carvalho, M. Figueiredo, E. Antunes, J. & Silva, R. (2016). The sound of bronze: Virtual resurrection of a broken medieval bell. Journal of Cultural Heritage. 19. 544-554.
[7] Sugita, I.K.G. Soekrisno, R. Miasa, I.M. & Suyitno. (2011). Mechanical and damping properties of silicon bronze alloys for music applications. International Journal of Engineering &. Technology. 11(6). 81-85.
[8] Sugita, I.K.G. Soekrisno, R. & Miasa, I.M. (2011). The effect of annealing temperature on damping capacity of the bronze 20 % Sn alloy. International Journal of Mechanical & Mechatronics Engineering. IJMME-IJENS. 11(4).1-5.
[9] Slamet, S. Suyitno, & Kusumaningtyas, I. (2019). Effect of composition and pouring temperature of Cu (20-24) wt.% Sn by sand casting on fluidity and Mechanical Properties, Journal of Mechanical Engineering and Science. 13(4). 6022-6035.
[10] Sugita, I.K.G. & Miasa, I.M. (2013). Feasibility Study On The Use Of Silicon-Bronze Alloys As An Alternative Material For Balinese Musical Instruments. 20th International Congress on Sound & Vibration; 7-11 July 2013.1-5. Bangkok, Thailand
[11] Prayoga, B.T. Suyitno, Dharmastiti, R. & Akbar, F. (2018). Microstructural characterization, defect, and hardness of titanium femoral knee joint produced using vertical centrifugal investment casting. Journal of Mechanical Science and Technology.32(1).149-156.
[12] Salonitis, K. Jolly, M. & Zeng, B. (2017). Simulation-based energy and resource-efficient casting process chain selection : A case study. Procedia Manufacturing. 8. 67-74.
[13] Wegst, U.G. (2006). Wood For Sound. American Journal of Botany. 93.1439-1448.
[14] Adams, R. D. & Fox, M.A.O. (1973). Correlation of the damping capacity of cast iron with its mechanical properties and microstructure. Journal of Mechanical Engineering Science. 15(2). 81-94.
[15] Grafov, B.M. (1994). The archimedes law and electrocapillarity. Electrochimica Acta. 39. 467-469.
[16] ASTM. (2015). Standard test methods for bend testing of material for ductility.1.1-10.
[17] Sutiyoko & Suyitno. (2012). Effect of pouring temperature and casting thickness on fluidity, porosity and surface roughness in lost foam casting of gray cast iron. Procedia Engineering. 50. 88-94.
[18] Halvaee, A. & Talebi, A. (2001). Effect of process variables on microstructure and segregation in the centrifugal casting of C92200 alloy. Journal of Materials Processing Technology. 118, 123-127.
[19] Sutiyoko. Suyitno. & Mahardika. M. (2016). Effect of gating system on porosity and surface roughness of femoral stem in centrifugal casting. Adv. Sci. Technol. Soc. AIP Conference Proceedings. 1755, 1-6.
[20] Sulaiman, S. & Hamouda, A.M.S. (2004). Modeling and experimental investigation of the solidification process in sand casting. Journal of Materials Processing Technology. 156, 1723-1726.
[21] Nadolski, M. (2017). The Evaluation of Mechanical Properties of High-tin Bronzes. Archives of Foundry Engineering. 17(1), 127-130.
[22] Nimbulkar, S.L. & Dalu. R.S. (2016). Design optimization of gating and feeding system through simulation technique for sand casting of wear plate. Perspectives in Science. 8.39-42.
[23] Singh, R. & Singh, S. (2013). Effect of process parameters on surface hardness, dimensional accuracy, and surface roughness of investment cast components; Journal of Mechanical Science and Technology. 27(1), 191-197.
[24] Bartocha, D. & Baron, C. (2016). Influence of tin-bronze melting and pouring parameters on its properties and bells ’ tone. Archives of Foundry Engineering. 16(4), 17-22.

Go to article

Authors and Affiliations

S. Slamet
1 2
S. Suyitnoa
1
I. Kusumaningtyasa
1
I.M. Miasaa
1

  1. Universitas Gadjah Mada, Yogyakarta, Indonesia
  2. Universitas Muria Kudus, Kudus, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Tin dioxide (SnO2) is an n-type semiconductor and has useful characteristics of high transmittance, excellent electrical properties, and chemical stability. Accordingly, it is widely used in a variety of fields, such as a gas sensor, photocatalyst, optoelectronics, and solar cell. In this study, SnO2 films are deposited by thermal atomic layer deposition (ALD) at 180°C using Tetrakis(dimethylamino)tin and water. A couple of 5.9, 7.4 and 10.1nm-thick SnO2 films are grown on SiO2/Si substrate and then each film is annealed at 400°C in oxygen atmosphere. Current transport of SnO2 films are analyzed by measuring current – voltage characteristics from room temperature to 150°C. It is concluded that electrical property of SnO2 film is concurrently affected by its semiconducting nature and oxidative adsorption on the surface.

Go to article

Authors and Affiliations

Seong Yu Yoon
Byung Joon Choi
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The possibility of Cu(II), Ni(II) and Sn(II) removal from model solutions and real wastewater from

the production of PCBs using Na2

CS3

for precipitation was presented in this paper. The testing was carried out

on a laboratory scale using model and real industrial wastewater containing additives in the form of complexing

compounds used in the production of PCBs (Na2

EDTA, NH3(aq), thiourea) and recommended by the USEPA

(Na3

MGDA, Na4

GLDA). Application of Na2

CS3

in optimal conditions of conducting precipitation process was

connected with obtaining wastewater containing low concentrations of metals (Cu 0.02 mg/L, Sn <0.01 mg/L, Ni

<0.005 mg/L at pH 9.39 and Cu 0.07 mg/L, Sn <0.01 mg/L, Ni 0.006 mg/L at pH 7.79). Controlled application of

Na2

CS3

by the use of a platinum redox electrode was also connected with obtaining treated wastewater containing

low concentrations of metals (Cu 0.019 mg/L, Sn <0.05 mg/L, Ni <0.0098 mg/L at pH 9–9.5 and E= -142 mV in the

laboratory scale and Cu 0.058 mg/L, Sn <0.005 mg/L, Ni 0.011 mg/L at pH 9.14 and E= +10 mV in the industrial

scale). Changing the value of redox potential of treated wastewater by dosing Na2

CS3

made it possible to control

the precipitation process on laboratory and industrial scale by the use of a platinum redox electrode. Controlled

application of Na2

CS3

can be used to remove Cu(II), Ni(II) and Sn(II) from industrial effl uent containing chelating

compounds like Na2

EDTA, NH3(aq), thiourea, Na3

MGDA and Na4

GLDA.

Go to article

Authors and Affiliations

Barbara Białecka
Maciej Thomas
Dariusz Zdebik
Download PDF Download RIS Download Bibtex

Abstract

Among the various thin film coating techniques, atomic layer deposition (ALD) has features of good controllability of the thickness, excellent step-coverage in 3-dimensional object even in the sub-nm thickness range at the relatively low deposition temperature. In this study, SnO2 thin films were grown by ALD in the variation of substrate temperatures from 150 to 250°C. Even such a low temperature may influence on the growth kinetics of the ALD reaction and thus the physical characteristics of thin films, such as crystallinity, film density and optical band gap, etc. We observed the decrease of the growth rate with increasing substrate temperature, at the same time, the density of the film was decreased with increasing temperature. Steric hindrance effect of the precursor molecule was attributed to the inverse relationship of the growth temperature and growth rate as well as the film density. Optical indirect band gap energy (~3.6 eV) of the ALD-grown amorphous SnO2 films grown at 150°C was similar with that of the literature value, while slightly lower band gap energy (~3.4 eV) was acquired at the films grown at higher temperature.
Go to article

Authors and Affiliations

Daeho Kim
Dong Ha Kim
Doh-Hyung Riu
Byung Joon Choi

This page uses 'cookies'. Learn more