Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the effect of upsetting ratio on distribution of the microhardness in longitudinal sections of hydroformed axisymmetric elements made from P265TR1 steel. The experimental research of hydroforming was carried out at a special stand which included a press with tooling and a hydraulic feeding system of oil. The measurements of microhardness were taken with a MATSUZAWA MMT-X3 Vickers hardness tester at a load of 100 g. The samples used in the tests were prepared from tube segments with a thin-wall ratio of 0.045. In the experiment, steel components were formed at upsetting coefficients of 0.07 and 0.09. For an established course of pressure and upsetting force, a series of steel components with exact representation of the die-cavity was formed. The paper provides a comparison of the microhardness distributions in three zones of longitudinal sections of axisymmetric elements at different degrees of material deformation. The greatest values of microhardness occurred in the area of cap for components at an upsetting coefficient 0.09.

Go to article

Authors and Affiliations

T. Miłek
Download PDF Download RIS Download Bibtex

Abstract

The article presents research on the use of Monte-Carlo Tree Search (MCTS) methods to create an artificial player for the popular card game “The Lord of the Rings”. The game is characterized by complicated rules, multi-stage round construction, and a high level of randomness. The described study found that the best probability of a win is received for a strategy combining expert knowledge-based agents with MCTS agents at different decision stages. It is also beneficial to replace random playouts with playouts using expert knowledge. The results of the final experiments indicate that the relative effectiveness of the developed solution grows as the difficulty of the game increases.
Go to article

Bibliography

  1.  C. Browne, “A survey of monte carlo tree search methods”, IEEE Trans. Comput. Intell. AI Games 4., 1–43 (2012).
  2.  R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klondike solitaire with Monte-Carlo planning”, Nineteenth International Conference on Automated Planning and Scheduling, 2009.
  3.  M. Świechowski, T. Tajmajer, and A. Janusz, “Improving hearthstone ai by combining mcts and supervised learning algo rithms”, 2018 IEEE Conference on Computational Intelligence and Games (CIG), 2018.
  4.  J. Mańdziuk, “MCTS/UCT in Solving Real-Life Problems”, Advances in Data Analysis with Computational Intelligence Methods, 277‒292, Springer, Cham, 2018.
  5.  S. Kajita, T. Kinjo, and T. Nishi, “Autonomous molecular design by Monte-Carlo tree search and rapid evaluations using molecular dynamics simulations”, Commun. Phys. 3(1), 1‒11 (2020).
  6.  S. Haeri and L. Trajković, “Virtual network embedding via Monte Carlo tree search”, IEEE Trans. Cybern. 48(2), 510‒521 (2017).
  7.  G. Best, O.M. Cliff, T. Patten, R.R. Mettu, and R. Fitch, “Decentralised Monte Carlo tree search for active perception”, Algorithmic Foundations of Robotics XII, 864‒879, Springer, Cham, 2020.
  8.  D.A. Dhar, P. Morawiecki, and S. Wójtowicz. “Finding differential paths in arx ciphers through nested monte-carlo search”, AEU Int. J. Electron. Commun 64(2), 147‒150 (2018).
  9.  K. Guzek and P. Napieralski, “Measurement of noise in the Monte Carlo point sampling method”, Bull. Pol. Acad. Sci. Tech. Sci. 59(1), 15‒19 (2011).
  10.  D. Tefelski, T. Piotrowski, A. Polański, J. Skubalski and V. Blideanu, “Monte-Carlo aided design of neutron shielding concretes”, Bull. Pol. Acad. Sci. Tech. Sci. 61(1), 161‒171 (2013).
  11.  C.D. Ward and P.I. Cowling, “Monte Carlo search applied to card selection in Magic: The Gathering”, IEEE Symposium on Computational Intelligence and Games, 2009.
  12.  P.I. Cowling, C.D. Ward, and E.J. Powley, “Ensemble determinization in monte carlo tree search for the imperfect information card game magic: The gathering”, IEEE Trans. Comput. Intell. AI Games 4(4), 241‒257 (2012).
  13.  S. Turkay, S. Adinolf, and D. Tirthali, “Collectible Card Games as Learning Tools”, Procedia – Soc. Behav. Sci. 46, 3701‒3705 (2012), doi: 10.1016/j.sbspro.2012.06.130.
  14.  K. Bochennek, B. Wittekindt, S.-Y. Zimmermann, and T. Klingebiel, “More than mere games: a review of card and board games for medical education”, Med. Teach. 29(9), 941‒948 (2007), doi: 10.1080/01421590701749813.
  15.  J.S.B. Choe and J. Kim, “Enhancing Monte Carlo Tree Search for Playing Hearthstone”, 2019 IEEE Conference on Games (CoG), London, United Kingdom, 2019, pp. 1‒7.
  16.  K. Godlewski and B. Sawicki, “MCTS Based Agents for Multistage Single-Player Card Game”, 21st International Conference on Computational Problems of Electrical Engineering (CPEE), 2020
  17.  “Magic: The Gathering”, [online] https://magic.wizards.com/en
  18.  E.J. Powley, P.I. Cowling, and D. Whitehouse. “Information capture and reuse strategies in Monte Carlo Tree Search, with applications to games of hidden information”, Artif. Intell. 217, 92‒116 (2014).
  19.  Fantasy Flight Publishing, “Hall of Beorn”, technical documentation, 2020 [Online] Available: http://hallofbeorn.com/LotR/Scenarios/ Passage-Through-Mirkwood
  20.  S. Zhang and M. Buro, “Improving hearthstone AI by learning high-level rollout policies and bucketing chance node events”, 2017 IEEE Conference on Computational Intelligence and Games (CIG), New York, USA, 2017, pp. 309‒316.
  21.  G.M.J-B. Chaslot, M.H.M. Winands, and H.J. van Den Herik, “Parallel monte-carlo tree search”, International Conference on Computers and Games, Springer, Berlin, Heidelberg, 2008.
  22.  A. Fern and P. Lewis, “Ensemble monte-carlo planning: An empirical study”, Twenty-First International Conference on Automated Planning and Scheduling, ICAPS 2011, Germany, 2011.
  23.  A. Santos, P. A. Santos, and F.S. Melo, “Monte Carlo tree search experiments in hearthstone,” 2017 IEEE Conference on Computational Intelligence and Games (CIG), New York, USA, 2017, pp. 272‒279.
Go to article

Authors and Affiliations

Konrad Godlewski
1
Bartosz Sawicki
1

  1. Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, two different compositions of submicron-structured titanium (760 nm) and micron-structured chromium (4.66 μm) powders were mixed to fabricate Cr-31.2 mass% Ti alloys by vacuum hot-press sintering. The research imposed various hot-press sintering pressures (20, 35 and 50 MPa), while the sintering temperature maintained at 1250°C for 1 h. The experimental results showed that the optimum parameters of the hot-press sintered Cr-31.2 mass% Ti alloys were 1250°C at 50 MPa for 1 h. Also, the relative density reached 99.94%, the closed porosity decreased to 0.04% and the hardness and transverse rupture strength (TRS) values increased to 81.90 HRA and 448.53 MPa, respectively. Moreover, the electrical conductivity is enhanced to 1.58 × 104 S·cm–1. However, the grain growth generated during the high-temperature and high-pressure of the hot-press sintering process resulted in the grain coarsening phenomenon of the Cr-31.2 mass% Ti alloys after 1250°C hot-press sintering at 50 MPa for 1 h. In addition, the Cr-31.2 mass% Ti alloys were fabricated with the submicron-structured titanium (760 nm) and chromium (588 nm) powders showed more effective compaction than the micron-structured titanium (760 nm) and chromium (4.66 μm) powders did. The closed porosity decreases to 0.02% and the hardness values increase to 83.23 HRA. However, the agglomeration phenomenon of the Cr phase and brittleness of the TiCr2 Laves phases easily led to a slight decrease in TRS (400.54 MPa).

Go to article

Authors and Affiliations

Shih-Hsien Chang
Chien-Lun Li
Kuo-Tsung Huang
Tzu-Hsien Yang
Download PDF Download RIS Download Bibtex

Abstract

In this research, Co-30 mass% Cr alloys were fabricated by a vacuum hot-press sintering process. Different amounts of submicron cobalt and chromium (the mean grain size is 800 and 700 nm, respectively) powders were mixed by ball milling. Furthermore, this study imposed various hot-press sintering temperatures (1100, 1150, 1200 and 1250°C) and pressures (20, 35 and 50 MPa), while maintaining the sintering time at 1 h, respectively. The experimental results show that the optimum parameters of hot-press sintered Co-30 mass% Cr alloys are 1150°C at 35 MPa for 1 h. Meanwhile, the sintered density reaches 7.92 g·cm–3, the closed porosity decreases to 0.46%, and the hardness and transverse rupture strength (TRS) values increase to 77.2 HRA and 997.1 MPa, respectively. While the hot-press sintered Co-30 mass% Cr alloys at 1150°C and 20 MPa for 1 h, the electrical conductivity was slightly enhanced to 1.79 × 104 S·cm–1, and the phase transformation (FCC → HCP) of cobalt displayed a slight effect on sintering behaviors of Co-30 mass% Cr alloys. All these results confirm that the mechanical and electrical properties of Co-30 mass% Cr alloys are effectively improved by using the hot-press sintering technique.

Go to article

Authors and Affiliations

Shih-Hsien Chang
ORCID: ORCID
Chih-Yao Chang
Kuo-Tsung Huang
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This study utilizes Ti-8Nb-4Co alloys added to different proportions of Mo2C powders (1, 3, and 5 mass%) by the vacuum sintering process of powder metallurgy and simultaneously vacuum sinters the alloys at 1240, 1270, 1300, and 1330°C for 1 h, respectively. The experimental results indicate that when 3 mass% Mo2C powders were added to the Ti-8Nb-4Co alloys, the specimens possessed the optimal mechanical properties after sintering at 1300°C for 1 h. The relative density was 98.02%, and the hardness and TRS were enhanced to 69.6 HRA and 1816.7 MPa, respectively. In addition, the microstructure of vacuum sintered Ti-8Nb-4Co-3Mo2C alloys has both α and β-phase structures, as well as TiC precipitates. EBSD results confirm that the Mo 2C in situ produced TiC during the sintering process and was uniformly dispersed in the grain boundary. Moreover, the reduced molybdenum atom acted as a β-phase stabilizing element and solid-solution in the titanium matrix.
Go to article

Authors and Affiliations

Shih-Hsien Chang
1
ORCID: ORCID
Kun Jie Liao
1
ORCID: ORCID
Kuo-Tsung Huang
2
ORCID: ORCID
Cheng Liang
1
ORCID: ORCID

  1. National Taipei University of Technology, Department of Materials and Miner al Resources Engineering, Taipei 10608, Taiwan, ROC
  2. National Kangshan Agricultural Industrial Senior High School, Department of Auto-Mechanics, Kaohsiung 82049, Taiwan, ROC

This page uses 'cookies'. Learn more