Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, two different compositions of submicron-structured titanium (760 nm) and micron-structured chromium (4.66 μm) powders were mixed to fabricate Cr-31.2 mass% Ti alloys by vacuum hot-press sintering. The research imposed various hot-press sintering pressures (20, 35 and 50 MPa), while the sintering temperature maintained at 1250°C for 1 h. The experimental results showed that the optimum parameters of the hot-press sintered Cr-31.2 mass% Ti alloys were 1250°C at 50 MPa for 1 h. Also, the relative density reached 99.94%, the closed porosity decreased to 0.04% and the hardness and transverse rupture strength (TRS) values increased to 81.90 HRA and 448.53 MPa, respectively. Moreover, the electrical conductivity is enhanced to 1.58 × 104 S·cm–1. However, the grain growth generated during the high-temperature and high-pressure of the hot-press sintering process resulted in the grain coarsening phenomenon of the Cr-31.2 mass% Ti alloys after 1250°C hot-press sintering at 50 MPa for 1 h. In addition, the Cr-31.2 mass% Ti alloys were fabricated with the submicron-structured titanium (760 nm) and chromium (588 nm) powders showed more effective compaction than the micron-structured titanium (760 nm) and chromium (4.66 μm) powders did. The closed porosity decreases to 0.02% and the hardness values increase to 83.23 HRA. However, the agglomeration phenomenon of the Cr phase and brittleness of the TiCr2 Laves phases easily led to a slight decrease in TRS (400.54 MPa).

Go to article

Authors and Affiliations

Shih-Hsien Chang
Chien-Lun Li
Kuo-Tsung Huang
Tzu-Hsien Yang
Download PDF Download RIS Download Bibtex

Abstract

In this research, Co-30 mass% Cr alloys were fabricated by a vacuum hot-press sintering process. Different amounts of submicron cobalt and chromium (the mean grain size is 800 and 700 nm, respectively) powders were mixed by ball milling. Furthermore, this study imposed various hot-press sintering temperatures (1100, 1150, 1200 and 1250°C) and pressures (20, 35 and 50 MPa), while maintaining the sintering time at 1 h, respectively. The experimental results show that the optimum parameters of hot-press sintered Co-30 mass% Cr alloys are 1150°C at 35 MPa for 1 h. Meanwhile, the sintered density reaches 7.92 g·cm–3, the closed porosity decreases to 0.46%, and the hardness and transverse rupture strength (TRS) values increase to 77.2 HRA and 997.1 MPa, respectively. While the hot-press sintered Co-30 mass% Cr alloys at 1150°C and 20 MPa for 1 h, the electrical conductivity was slightly enhanced to 1.79 × 104 S·cm–1, and the phase transformation (FCC → HCP) of cobalt displayed a slight effect on sintering behaviors of Co-30 mass% Cr alloys. All these results confirm that the mechanical and electrical properties of Co-30 mass% Cr alloys are effectively improved by using the hot-press sintering technique.

Go to article

Authors and Affiliations

Shih-Hsien Chang
ORCID: ORCID
Chih-Yao Chang
Kuo-Tsung Huang
ORCID: ORCID

This page uses 'cookies'. Learn more