Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Aluminum alloys are widely used today in plastic injection molds in the automotive and aerospace industries due to their high strength and weight ratio, good corrosion and fatigue resistance as well as high feed rates. The 5754 aluminum alloy has high corrosion resistance and a structure suitable for cold forming. In this study, an AA 5754-H111 tempered aluminum alloy with the dimensions of 80×80×30 mm was used, and some of the materials were cryogenically heat treated. For the milling operations, ϕ12 mm diameter 76 mm height uncoated as well as TiCN and TiAlN coated end mills were used. Different levels of cutting depth (1.25, 2.0, 2.5 mm), cutting speed (50, 80, 100 m/ min), feed rate (265, 425, 530 m/ min) and machining pattern (concentric, back and forth and inward helical) were used. The number of experiments was reduced from 486 to 54 using the Taguchi L54 orthogonal array. The values obtained at the end of the experiments were evaluated using the signal-to-noise ratio, ANOVA, three-dimensional graphs and the regression method. Based on the result of the verification experiments, the processing accuracy for surface roughness was improved from 3.20 μm to 0.90 μm, with performance increase of 71.88%.

Go to article

Authors and Affiliations

G. Samtaş
S. Korucu
Download PDF Download RIS Download Bibtex

Abstract

In this paper the investigation of the FSW result characteristics on AA7075-T6 of the highest grade is carried out using different process parameters. A vertical milling machine with different FSW tool geometry is used to weld AA7075. When the tool rotational speed varies from 1200 and 1800 (rpm), different welding parameters are studied, the plunge depth of tool is between 0.14 and 0.20 mm, the table transverse speed range is between 20 and 50 (mm/min) and the tool shoulder diameter was 20 mm. The welding settings are optimized using the Taguchi approach. In this experimental investigation Taguchi Technique is utilized in this study to optimize three factorial and three level designs. The results show that when the rotating speed increases, the UTS of the welded joint increases, whereas the tensile strength of the welded joint decreases resulting to frictional heat created during the FSW process. Tensile strength decreases as feed increases and increases as rotational speed increases. For a 5 mm thick plate, tensile strength is optimal with a tool shoulder diameter of 20 mm, a rotational speed of 1600 rpm, feed rate of 30 mm/min and plunge depth. The shoulder diameter of 20 mm provides the maximum ultimate tensile strength when it is compared with all other tool shoulder diameter. The Al alloy AA7075-T6 plates, however, concurrently developed an equiaxial grain structure with a substantially smaller grain size and coarsened the precipitates.
Go to article

Authors and Affiliations

A. Sharma
1 2
ORCID: ORCID
V. Kumar Dwivedi
1
ORCID: ORCID
Y. Pal Singh
3
ORCID: ORCID

  1. GLA University Mathura, Department of Mechanical Engineering, India
  2. Manager-Regulatory Affairs Department, KAULMED Pvt. Ltd., Sonipat , India
  3. Temperature and Humidity Standards Group, CSIR – National Physical Laboratory, New Delhi, India
Download PDF Download RIS Download Bibtex

Abstract

Currently, the world of material requires intensive research to discover a new-class of materials those posses the properties like lower in weight, greater in strength and better in mechanical properties. This led to the study of light and strong alloys or composites. This study focuses to produce current novel aluminium composite with an appreciable density, good machinable characteristics, less corrosive, high strength, light weight and low manufacturing cost product. In this research, an aluminium metal matrix composites (AMMC) (Al-0.5Si-0.5Mg-2.5Cu-15SiC) was developed using the metallurgical powdered method and subjected to the investigation of erosion wear characteristics. Here the solid particle erosion test was conducted on AMMC samples. The article presents, the design of Taguchi experiments and statistical techniques of erosion wear characteristics and the behaviors of the composite. The rate of erosion wear found to decrease with increasing impact angle, regardless of the rate of impact. With higher impact velocity erosion rate increases but decreases with stand of distance.
Go to article

Authors and Affiliations

Rajesh Kumar Behera
1
ORCID: ORCID
Birajendu Prasad Samal
2
ORCID: ORCID
Sarat Chandra Panigrahi
3
ORCID: ORCID
Pramod Kumar Parida
4
ORCID: ORCID
Kamalakanta Muduli
5 6
ORCID: ORCID
Noorhafiza Muhammad
7
ORCID: ORCID
Nitaisundar Das
6
Shayfull Zamree Abd Rahim
7
ORCID: ORCID

  1. Biju Patnaik University of Technology, Odisha, India
  2. Orissa Engineering College, Department of Mechanical Engineering, Bhubaneswar, Odisha, India
  3. Raajdhani Engineering College, Bhubaneswar, India
  4. College Engineering and Technology, Department of Mechanical Engineering Bhubaneswar, Odisha, India
  5. Papua New Guinea University of Technology, Department of Mechanical Engineering, Lae, Morobe Province, Pmb 411, Papua New Guinea
  6. C.V. Raman Global University, Bhubaneswar, Odisha, India
  7. Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (Cegeogtech) and Faculty of Mechanical Engineering Technology, Kampus Pauh Putra, 02600 Arau, Perlis, Malaysia

This page uses 'cookies'. Learn more