Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 29
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Applications of morphological filters for two-process profiles were analysed. Dilation, closing and alternating sequential (closing +  opening) filters were used with a circle (disk) as a structuring element. An original method of a disk radius selection was elaborated for two-process profiles. This procedure was applied for many simulated and measured profiles. Behaviors of morphological filters were compared with those of double Gaussian (Rk) filter. Robust filter was also taken into consideration. In calculation, TalyMap software was used. The proposed procedure was found to be very useful. It was developed for 2D profiles but it can be easily extended for an areal (3D) surface topography filtering. From among morphological filters, the alternate sequential filter is suggested.

Go to article

Authors and Affiliations

P. Pawlus
R. Reizer
A. Łętocha
M. Wieczorowski
Download PDF Download RIS Download Bibtex

Abstract

To obtain anti-corrosive thermo-diffusion zinc coatings, the authors use highly effective zinc saturating mixtures. This technology makes it possible to obtain coatings with a high zinc content in the δ-phase as well as a zinc-rich phase of FeZn13 (ζ-phase) on the coating surface. As a result of long-term studies into the corrosion properties of thermo-diffusion zinc (TDZ) coatings conducted by the authors, a number of features of their corrosive behavior have been established. The corrosion rate of those coatings in desalted and chloride-containing media is lower than those of galvanic or hot-dip zinc coatings. The corrosion behavior depends on the content of zinc on the surface and the texture features of the coating. The results showed that on the surface of thermo-diffusion coatings in the corrosion on media containing chloride ions, zinc hydroxychloride (simonkolleite – Zn5Cl2[OH]8[H2O]) has been formed. Compared to coatings obtained by other methods, the rate of simonkolleite formation was higher on TDZ coatings, which might have a positive effect on their resistance in aggressive atmospheres.

Go to article

Authors and Affiliations

A. Biryukov
R. Galin
D. Zakharyevich
A. Wassilkowska
A. Kolesnikov
T. Batmanova
Download PDF Download RIS Download Bibtex

Abstract

Activated tungsten inert gas (ATIG) welding has a good depth of penetration (DOP) as compared to the conventional tungsten inert gas (TIG) welding. This paper is mainly focused on ATIG characterization and mechanical behavior of aluminum alloy (AA) 6063-T6 using SiO2 flux. The characterization of the base material (BM), fusion zone (FZ), heat affected zone (HAZ) and, partially melted zone is carried out using the suitable characterization methods. The weld quality is characterized using ultrasonic-assisted non-destructive evaluation. A-scan result confirms that the ATIG welded samples have more DOP and less bead width as compared to conventional TIG. The recorded tensile strength of ATIG with SiO2 is better than the conventional TIG welding. The failure mode is ductile for ATIG welding with larger fracture edges and is brittle in the case of conventional TIG welding.

Go to article

Bibliography

  1.  S. Jannet, P.K. Mathews, and R. Raja, “Comparative investigation of friction stir welding and fusion welding of 6061T6 – 5083 O aluminum alloy based on mechanical properties and microstructure”, Bull. Pol. Ac.: Tech. 62(4), 791‒795 (2014), doi: 10.2478/bpasts-2014-0086.
  2.  S.T. Amancio-Filho, S. Sheikhi, J.F. dos Santos, and C. Bolfarini, “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4”, J. Mater. Process. Technol. 206. 132–142 (2008), doi: 10.1016/j.jmatprotec.2007.12.008.
  3.  P. Mukhopadhyay, “Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys”, ISRN Metall. 2012, 165082 (2012), doi: 10.5402/2012/165082.
  4.  B. Choudhury and M. Chandrasekaran, “Investigation on welding characteristics of aerospace materials – A review”, Mater. Today Proc. 4, 7519–7526 (2017), doi: 10.1016/j.matpr.2017.07.083.
  5.  R.R. Ambriz and V. Mayagoitia, “Welding of Aluminum Alloys”, in Welding, Brazing and Soldering, pp. 722–739, ASM International, 2018. doi: 10.31399/asm.hb.v06.a0001436.
  6. [6]  P.J. Modenesi, “The chemistry of TIG weld bead formation”, Weld. Int. 29, 771–782 (2015), doi: 10.1080/09507116.2014.932990.
  7.  A.K. Singh, V. Dey, and R.N. Rai, “Techniques to improveweld penetration in TIG welding (A review)”, Mater. Today Proc. 4, 1252–1259 (2017), doi: 10.1016/j.matpr.2017.01.145.
  8.  R.S. Vidyarthy and D.K. Dwivedi, “Activating flux tungsten inert gas welding for enhanced weld penetration”, J. Manuf. Process. 22, 211–228 (2016), doi: 10.1016/j.jmapro.2016.03.012.
  9.  R.S. Vidyarthy and D.K. Dwivedi, “Microstructural and mechanical properties assessment of the P91 A-TIG weld joints”, J. Manuf. Process. 31, 523–535 (2018), doi: 10.1016/j.jmapro.2017.12.012.
  10.  K.D. Ramkumar, V. Varma, M. Prasad, N.D. Rajan, and N.S. Shanmugam, “Effect of activated flux on penetration depth, microstructure and mechanical properties of Ti-6Al-4V TIG welds”, J. Mater. Process. Technol. 261, 233–241 (2018), doi: 10.1016/j.jmatprotec.2018.06.024.
  11.  H. Kumar and N.K. Singh, “Performance of activated TIG welding in 304 austenitic stainless steel welds”, Mater. Today Proc. 4, 9914–9918 (2017), doi: 10.1016/j.matpr.2017.06.293.
  12.  R.S. Vidyarthy, A. Kulkarni, and D.K. Dwivedi, “Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint”, Mater. Sci. Eng. A. 695, 249–257 (2017), doi: 10.1016/j.msea.2017.04.038.
  13.  E.R. Imam Fauzi, M.S. Che Jamil, Z. Samad, and P. Muangjunburee, “Microstructure analysis and mechanical characteristics of tungsten inert gas and metal inert gas welded AA6082-T6 tubular joint: A comparative study”, Trans. Nonferrous Met. Soc. China (English Ed.) 27, 17–24 (2017), doi: 10.1016/S1003-6326(17)60003-7.
  14.  R.S. Coelho, A. Kostka, J.F. dos Santos, and A. Kaysser-Pyzalla, “Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure”, Mater. Sci. Eng. A. 556, 175–183 (2012), doi: 10.1016/j.msea.2012.06.076.
  15.  A.S. Zoeram, S.H.M. Anijdan, H.R. Jafarian, and T. Bhattacharjee, “Welding parameters analysis and microstructural evolution of dissimilar joints in Al/Bronze processed by friction stir welding and their effect on engineering tensile behavior”, Mater. Sci. Eng. A. 687, 288–297, (2017). doi: 10.1016/j.msea.2017.01.071.
  16.  K.H. Dhandha and V.J. Badheka, “Effect of activatingfluxes on weld bead morphology of P91 steelbead-on-platewelds by flux assisted tungsteninert gas welding process”, J. Manuf. Process. 17, 48–57 (2015), doi: 10.1016/j.jmapro.2014.10.004.
  17.  A. Krajewski, W. Włosiński, T. Chmielewski, and P. Kołodziejczak, “Ultrasonic-vibration assisted arc-welding of aluminum alloys”, Bull. Pol. Ac.: Tech. 60(4), 841‒852 (2012), doi: 10.2478/v10175-012-0098-2.
  18.  H.S. Patil and S.N. Soman, “Effect of tool geometry and welding speed on mechanical properties and microstructure of friction stir welded joints of aluminum alloys AA6082-T6”, Arch. Mech. Eng. 61, 455‒468 (2014), doi: 10.2478/meceng-2014-0026.
Go to article

Authors and Affiliations

Rajiv Kumar
1
S.C. Vettivel
2
Harmesh Kumar Kansal
1

  1. Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India
  2. Department of Mechanical Engineering, Chandigarh College of Engineering and Technology (Degree Wing), Chandigarh, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a deep learning-based image texture recognition system. The methodology taken in this solution is formed in a bottom-up manner. It means we swipe a moving window through the image in order to categorize if a given region belongs to one of the classes seen in the training process. This categorization is done based on the Deep Neural Network (DNN) of fixed architecture. The training process is fully automated regarding the training data preparation, investigation of the best training algorithm, and its hyper-parameters. The only human input to the system is the definition of the categories for further recognition and generation of the samples (region markings) in the external application chosen by the user. The system is tested on road surface images where its task is to categorize image regions to a different road category (e.g. curb, road surface damage, etc.) and is featured with 90% and above accuracy.

Go to article

Authors and Affiliations

R. Kapela
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of the coiling temperature on the tensile properties of API X70 linepipe steel plates is investigated in terms of the microstructure and related anisotropy. Two coiling temperatures are selected to control the microstructure and tensile properties. The API X70 linepipe steels consist mostly of ferritic microstructures such as polygonal ferrite, acicular ferrite, granular bainite, and pearlite irrespective of the coiling temperature. In order to evaluate the anisotropy in the tensile properties, tensile tests in various directions, in this case 0° (rolling direction), 30°, 45° (diagonal direction), 60°, and 90° (transverse direction) are conducted. As the higher coiling temperature, the larger amount of pearlite is formed, resulting in higher strength and better deformability. The steel has higher ductility and lower strength in the rolling direction than in the transverse direction due to the development of γ-fiber, particularly the {111}<112> texture.
Go to article

Authors and Affiliations

Dong-Kyu Oh
1
ORCID: ORCID
Seung-Hyeok Shin
1
ORCID: ORCID
Sang-Min Lee
2
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  2. Hyundai Steel Company, Dangjin-Si, Chungnam, 31719, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Celem pracy była wstępna charakterystyka (mineralogiczna, chemiczna, teksturalna) odpadów poflotacyjnych, stanowiących surowiec uboczny (odpadowy) przy uzyskiwaniu koncentratów cynkowo-ołowiowych, pod kątem dalszych analiz nad możliwością ich perspektywicznego (eksperymentalnego) wykorzystania jako sorbentów gazów kwaśnych (SO2 i CO2). Składowisko tych odpadów jest własnością ZGH 'Bolesław' w Bukownie. Materiał badawczy stanowiła próbka odpadów poflotacyjnych pobrana ze stawu osadowego nr 1, leżącego w południowej części Stawu Zachodniego. Charakterystyka wytypowanych do badań materiałów obejmowała podstawowe badania mineralogiczne (XRD, SEM-EDS), analizy chemiczne (oznaczenie zawartości wilgoci analitycznej, zawartości strat prażenia, podstawowego składu chemicznego, jak też pierwiastków śladowych) oraz wyznaczenie podstawowych parametrów teksturalnych (powierzchnia właściwa BET, rozkład i wielkość porów). Badania mineralogiczne wykazały, że materiał odpadowy stanowią głównie minerały węglanowe (w przewadze kalcyt, dolomit, ankeryt) oraz minerały stanowiące pozostałość po niewyflotowanych kruszcach (w przewadze galena, sfaleryt). Analiza chemiczna pozwoliła stwierdzić, iż w analizowanej próbce dominują związki wapnia, magnezu i żelaza uwarunkowane przewagą minerałów węglanowych w badanych odpadach. Wśród pierwiastków śladowych przeważa arsen, następnie mangan i bar, występujące jednak w ilości nie przekraczającej 1%. Analiza teksturalna wykazała, że materiał badawczy charakteryzuje się niską powierzchnią właściwą i dużymi rozmiarami cząstek. Przeprowadzone badania sugerują, że analizowany materiał charakteryzuje się ubogimi właściwościami adsorpcyjnymi, aczkolwiek mógłby on znaleźć zastosowanie w metodach odsiarczania, jak też neutralizacji dwutlenku węgla (karbonizacja). Należałoby jednak w tym celu przeprowadzić dodatkowe badania wymywalności metali ciężkich w środowisku kwasowym, jak też zastosować domieszki innych składników, takich jak cement czy zeolity, w celu immobilizacji niebezpiecznych składników odpadów.

Go to article

Authors and Affiliations

Magdalena Wdowin
Agnieszka Gruszecka
Download PDF Download RIS Download Bibtex

Abstract

Results of the studies of optical properties of anti-reflective glasses with various texturization patterns, which were used as a coating for crystalline silicon solar cells, are presented. It was found that glass samples sorted by their optical transmittance demonstrated the same order as when sorted by their solar-cell short-circuit current enhancement parameter. The value of the latter depended on the parameters of texturization, such as the surface density of inclusions and their profile, and the depth of etching pits. A 2% relative increase of the solar cell efficiency was obtained for the best glass sample for null degree angle of incidence, proving enhanced light trapping properties of the studied glass.

Go to article

Authors and Affiliations

M. Pociask-Bialy
K.D. Mynbaev
M. Kaczmarzyk
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the microstructural and texture changes in polycrystalline CuZn30 alloy, copper, and AA1050 aluminium alloy have been studied to describe the crystal lattice rotation during shear bands formation. The hat-shaped specimens were deformed using a drop-hammer at the strain rate of 560 s –1. Microstructure evolution was investigated using optical microscopy, whereas texture changes were examined with the use of a scanning electron microscope equipped with the EBSD facility. The microstructural observations were correlated with nanohardness measurements to evaluate the mechanical properties of the sheared regions. The analyses demonstrate the gradual nature of the shear banding process, which can be described as a mechanism of the bands nucleation and then successive growth rather than as an abrupt instability. It was found that regardless of the initial orientation of the grains inside the sheared region, a well-defined tendency of the crystal lattice rotation is observed. This rotation mechanism leads to the formation of specific texture components of the sheared region, different from the one observed in a weakly or non-deformed matrix. During the process of rotation, one of the {111} planes in each grain of the sheared region ‘tends’ to overlap with the plane of maximum shear stresses and one of the <110> or <112> directions align with the shear direction. This allows slip propagation through the boundaries between adjacent grains without apparent change in the shear direction. Finally, in order to trace the rotation path, transforming the matrix texture components into shear band, rotation axis and angles were identified.
Go to article

Authors and Affiliations

I. Mania
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
M. Miszczyk
1
ORCID: ORCID
M. Prażmowski
2
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
  2. Opole University of Technology, Faculty of Mechanics, 76 Prószkowska Str., 45-758 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of the study was to assess the potential use of optical measuring instruments to determine the minimum chip thickness in face milling. Images of scanned surfaces were analyzed using mother wavelets. Filtration of optical signals helped identify the characteristic zones observed on the workpiece surface at the beginning of the cutting process. The measurement data were analyzed statistically. The results were then used to estimate how accurate each measuring system was to determine the minimum uncut chip thickness. Also, experimental verification was carried out for each mother wavelet to assess their suitability for analyzing surface images.

Go to article

Authors and Affiliations

Damian Gogolewski
Włodzimierz Makieła
Łukasz Nowakowski
Download PDF Download RIS Download Bibtex

Abstract

The article reviews the results of experimental tests assessing the impact of process parameters of additive manufacturing technologies on the geometric structure of free-form surfaces. The tests covered surfaces manufactured with the Selective Laser Melting additive technology, using titanium-powder-based material (Ti6Al4V) and Selective Laser Sintering from polyamide PA2200. The evaluation of the resulting surfaces was conducted employing modern multiscale analysis, i.e., wavelet transformation. Comparative studies using selected forms of the mother wavelet enabled determining the character of irregularities, size of morphological features and the indications of manufacturing process errors. The tests provide guidelines and allow to better understand the potential in manufacturing elements with complex, irregular shapes.
Go to article

Authors and Affiliations

Damian Gogolewski
1

  1. Kielce University of Technology, Department of Mechanical Engineering and Metrology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

We present a prototype of a simple, low-cost setup for a fast scatterometric surface texture measurements. We used a total integrated scatter method (TIS) with a semiconductor laser (λ =  638 nm) and a Si photodiode. Using our setup, we estimated the roughness parameters Rq for two reference surfaces (Al mirrors with flatness λ/10) and seven equal steel plates to compare. The setup is easily adaptable for a fast, preliminary manufacturing quality control. We show is possible to construct a low-cost measurement system with nanometric precision.

Go to article

Authors and Affiliations

D. Kucharski
H. Zdunek

Authors and Affiliations

Małgorzata Perek-Nowak
1
Grzegorz Boczkal
1
ORCID: ORCID
Paweł Pałka
1
ORCID: ORCID
Piotr Kuropatwa
1

  1. Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of this paper is to develop a Non Destructive Testing (NDT) method for the detection and classification of defects in composite materials at a micro level and to devise methodologies to analyse the corrosion resistance behavior using Scanned Electron Microscope (SEM) imagery. The defects on the Stainless Steel – Molybdenum (SS-Mo) Nanocomposite coating is estimated from their Scanning Electron Micrographs by using Image Processing algorithms. For this, the SS-Mo Nano Composite coatings are fabricated using a DC magnetron sputtering process using an indigenously prepared sputtering target. Depositions are carried out on Glass substrate for the evaluation of structural, morphological, chemical composition and corrosion resistance of the coatings prepared under different conditions (deposition of SS at 300°C and RT (Room Temperature); deposition of SS + Mo at 300°C and RT). The structural and compositional analysis performed with X-ray Diffraction (XRD) and Energy-Dispersive X-ray spectroscopy (EDX) has confirmed the formation of Stainless Steel Molybdenum Composite, when the deposition is at 300°C. The SS-Mo composite deposited at 300°C is also observed to yield high corrosion resistance of the order 0.058 mm/year. A novel texture – morphology based image feature descriptor has been proposed for corrosion resistance to evaluate the composite material in a Non-destructive manner. The analysis of SEM image of the developed coatings using the proposed feature along with machine learning algorithm reveals the superior property for SS-Mo coatings deposited at 300°C which is also demonstrated by the laboratory experiments.
Go to article

Authors and Affiliations

M.C. Pravin
1
ORCID: ORCID
S. Karthikeyan
2
ORCID: ORCID
S. Sathyabama
3
ORCID: ORCID
Sivaramakrishnan Balaji
4
ORCID: ORCID

  1. Bannari Amman Institute Of Technology, Mechatr Onics, India
  2. Thiagarajar College of Engineering, Mechanical Engineering, India
  3. Thiagarajar College of Engineering, Electronics and Communication Engineering, India
  4. Thiagarajar College of Engineering, Chemistry, India
Download PDF Download RIS Download Bibtex

Abstract

Donghua steel continuous casting-rolling (DSCCR) line is a new endless rolling line in which tunnel heating furnace is added before and after roughing mills to change the temperature field of slab and intermediate slab, but this change will affect the microstructure and properties of hot rolled plate. Therefore, the microstructure evolution, mechanical properties, texture analysis, hole expanding and earing test of 2.0 mm thick hot rolled plate produced by DSCCR line at different final rolling temperature of 860°C, 840°C and 820°C are studied. The results show that with the decrease of final rolling temperature, there is an obvious layered microstructure distribution along the thickness direction, and the surface coarse grain area gradually expands inward, at the same time the morphology of cementite also changed from large multi domain lamellar pearlite and long rod cementite to small single domain lamellar pearlite and short rod cementite. The engineering stress-strain curves have discontinuous yield with the yield elongation of 4-5% and the elongations are more than 35%. EBSD analysis shows that small angle grain boundaries and deformed grains increase significantly with the decrease of final rolling temperature, and are mainly distributed in fine grain area. Hole expanding and earing tests show that with the decrease of final rolling temperature, the earing performance decreased but the limiting hole expanding ratio is similar.
Go to article

Authors and Affiliations

Chaoyang Li
1
Peng Tian
2
ORCID: ORCID
Zhipeng Zhao
2
Xiaohui Liang
2
Shuhuan Wang
2
Yonglin Kang
2
Xian Luo
2

  1. North China University of Science and Technology, School of Metallurgy and Energy, Tangshan, 063210, China
  2. University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing, 100083, China
Download PDF Download RIS Download Bibtex

Abstract

The mechanism in which the coatings made by thermal spraying adhere to the substrate is in most cases of a mechanical nature, thus being dependent on the morphology of the substrate surface. This paper study how the texture of the substrate influences the behavior of dry sliding wear, a behavior based on the adhesion to the substrate of the analyzed coatings. For this purpose, a Co – base powder, was chosen for atmospheric plasma spraying. For the substrate, a rectangular profile made of low-alloy steel was chosen, the surface of which was textured by mechanical abrasion, in order to obtain different degrees of roughness: sample S1 – Ra1 = 1.59 µm, sample S2 – Ra2 = 2.32 µm, sample 3 – Ra3.1 = 1.25 μm, Ra3.2 = 3.88 μm. In the case of sample 3, the texturing was done on one direction, with an elongated profile, so that the effect of the main direction of dry sliding wear on the quality of the coating could be studied. The tests were performed on an Amsler test machine, at constant load, for 1 hour. The samples were mounted in a fixed position, and the wear occurred on the basis of the rotation of the metal disc, without lubrication. It was found that the coating of sample 1 was the most affected, resulting even a partial delamination, and the best behavior was recorded in the case of sample 3.1.
Go to article

Authors and Affiliations

D. Cristisor
1
ORCID: ORCID
D.L. Chicet
2
ORCID: ORCID
C. Cirlan Paleu
1
ORCID: ORCID
C. Stescu
1
ORCID: ORCID
C. Munteanu
1 3
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Department of Mechanical Engineering, Blvd. Mangeron, No. 61, 700050, Iasi, Romania
  2. Gheorghe Asachi Technical University of Iasi, Department of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania
  3. Technical Sciences Academy of Romania, 26 Dacia Blvd, Bucharest, 030167, Romania
Download PDF Download RIS Download Bibtex

Abstract

The objective of this research is to determine the impact of waves on the segregation of sediment within the area of its supply in the context of meteorological conditions. The research was conducted on a 4 km section of the shore of Calypsostranda (Bellsund, West Spitsbergen), shaped by waves such as swell, wind waves, and tides. Particular attention was paid to the diversity and variability of the surface texture within the intertidal zone. Meteorological measurements, recording of wave climate, as well as analysis of the grain-size distribution of the beach sediments were performed. Nearshore bathymetry, longshore drifts, episodic sediment delivery from land, as well as resistance of the shore to coastal erosion and direction of transport of sediments in the shore zone are important factors controlling shore development. Data show that wind waves contribute to erosion and discharge of material from the nearshore and intertidal zone. The research also shows that oceanic swell, altered by diffraction, reaching the shore of Calypsostranda contributes to better sorting of sediment deposited on the shore through washing it out from among gravels, and longshore transport of its finest fraction. The grain size distribution of shore sediments is significantly changed already during one tidal cycle. The degree of this modification depends not only on wave height and period but on the direction of wave impact. The shore of Calypsostranda can be regarded as transitional between high and low energy coasts.

Go to article

Authors and Affiliations

Piotr Zagórski
Karolina Mędrek
Mateusz Moskalik
Jan Rodzik
Agnieszka Herman
Łukasz Pawłowski
Marek Jaskólski

Authors and Affiliations

Sang-Hyeon Jo
1
ORCID: ORCID
Seong-Hee Lee
1
ORCID: ORCID

  1. Mokpo National University, Advanced Materials Science and Engineering, Muan-gun , Jeonnam 58554, Korea
Download PDF Download RIS Download Bibtex

Abstract

In order to explore the impact of coal and gangue particle size changes on recognition accuracy and to improve the single particle size of coal and gangue identification accuracy of sorting equipment, this study established a database of different particle sizes of coal and gangue through image gray and texture feature extraction, using a relief feature selection algorithm to compare different particle size of coal and gangue optimal features of the combination, and to identify the points and particle size of coal and gangue. The results show that the optimal features and number of coal and gangue are different with different particle sizes. Based on visible-light coal and gangue separation technology, the change of coal and gangue particle size cause fluctuations in the recognition accuracy, and the fluctuation of recognition accuracy will gradually decrease with increases in the number of features. In the process of particle size classification, if the training model has a single particle size range, the recognition accuracy of each particle size range is low, with the highest recognition accuracy being 98% and the average recognition rate being only 97.2%. The method proposed in this paper can effectively improve the recognition accuracy of each particle size range. The maximum recognition accuracy is 100%, the maximum increase is 4%, and the average recognition accuracy is 99.2%. Therefore, this method has a high practical application value for the separation of coal and gangue with single particle size.
Go to article

Authors and Affiliations

Xin Li
1 2
ORCID: ORCID
Shuang Wang
1 2
Lei He
1 2
Qisheng Luo
1 2

  1. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan, China
  2. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, China
Download PDF Download RIS Download Bibtex

Abstract

This study describes a method that allows the modelling of magnetisation processes in transformer steel sheets for any direction of the magnetic field strength. In the proposed approach, limiting hysteresis loops for the rolling and transverse directions were used. These loops are modified depending on the magnetisation angle between the direction of the field strength vector and rolling direction. For this purpose, unique correction coefficients, which are functions of the magnetisation angle, were applied for both hysteresis loops. An algorithm for determining the limiting hysteresis loops for any magnetisation angle is presented herein. The calculation results for several cases of magnetisation were compared with the measured hysteresis loops.
Go to article

Authors and Affiliations

Michał Sierżęga
1
ORCID: ORCID
Witold Mazgaj
1
ORCID: ORCID

  1. Department of Electrical Engineering, Cracow University of Technology, 24 Warszawska str., 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the paper is to present a method which allows taking into account the anisotropic properties of dynamo steel sheets. An additional aim is to briefly present anisotropic properties of these sheets which are caused by occurrences of some textures. In order to take into account textures occurring in dynamo sheets, a certain sheet sample is divided into elementary segments. Two matrix equations, describing changes of the magnetic field, are transformed to one non-linear algebraic equation in which the field strength components are unknown. In this transformation the flux densities assigned to individual elementary segments are replaced by functions of flux densities of easy magnetization axes of all textures occurring in the given dynamo sheet. The procedure presented in the paper allows determining one non-linear matrix equation of the magnetic field distribution; in this equation all textures occurring in a dynamo sheet are included. Information about textures occurring in typical dynamo sheets may be used in various approaches regarding the inclusion of anisotropic properties of these sheets, but above all, the presented method can be helpful in calculations of the magnetic field distribution in anisotropic dynamo sheets.

Go to article

Authors and Affiliations

Witold Mazgaj
ORCID: ORCID
Zbigniew Szular
Michał Sierżęga
ORCID: ORCID
Paweł Szczurek
Download PDF Download RIS Download Bibtex

Abstract

The aim of the present work was to determine the influence of the microstructural evolution of copper single crystals with the initial orientations of <001> and <111> after cold drawing on their corrosion resistance. Transmission electron microscopy, X-ray diffraction, and electron backscattering diffraction were used to characterize the microstructural changes. To evaluate the corrosion resistance after deformation, open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization analyses were conducted. The microstructural observations showed the presence of dislocation cell structures and shear bands in deformed sample with initial orientation <001> single crystal, as well as a strongly-developed substructure in sample <111>. The material with initial orientation of <001> was more resistive in analyzed medium than material with the initial orientation of <111>.

Go to article

Authors and Affiliations

M. Koralnik
A. Dobkowska
B. Adamczyk-Cieślak
ORCID: ORCID
J. Mizera
Download PDF Download RIS Download Bibtex

Abstract

Estimation and application of water retention curves in heavy soils have own specifics. The reason for these specific properties is the composition of the high clay texture. This is manifested by volume changes of soil depending on moisture. Up to 40% change in the volume compared to the saturated state was recorded in the conditions of the East Slovakian Lowland. The results described in this work are based on research work carried out in the East Slovakian Lowland and represent an analysis of selected 42 samples out of a total of 250 samples in which laboratory measurements of soil water retention curves and volume changes were performed. Selected samples represent the localities Senné and Poľany. Volumetric changes were measured in a laboratory by measuring the dimensions of soil samples. Appropriate changes in the volume of soil samples should be measured when determining moisture retention curves. Neglecting this physical effect leads to a distorted determination of the water retention curves in heavy soils. In the laboratory measurement of water retention curves points, changes in the volume of the sample were measured in the range of 0.24–43.67% depending on the soil moisture potential during drainage. In the case of neglecting the effect of shrinkage during the drainage of samples, a certain error is occurring in the calculation of the volumetric moisture. The range of this error was 1–13% of volumetric moisture.

Go to article

Authors and Affiliations

Branislav Kandra
Milan Gomboš
Download PDF Download RIS Download Bibtex

Abstract

In this paper both envelope approach and morphological filters for characterisation of surface textures were proposed, applied and thoroughly examined. Obtained results were compared with those received after appliance of commonly-used algorithms. The effect of appliance of proposed procedures on surface topography parameters (from ISO 25178 standard) was taken into consideration. The following types of surface textureswere assessed: two-process plateau-honed cylinder liners, plateau-honed cylinder liners with additionally burnished dimples, turned piston skirts, grinded and/or isotropic topographies. It was assumed that envelope characteristics (envelope filtration) can provide results useful for assessments of deep and/or wide oil-reservoirs especially when they are edge located. Moreover, some near-valley areas of surface texture details can be less distorted when envelope filtering is accomplished. It was also found that closing and/or opening envelope filtration can be valuable for reduction of some surface topography measurement errors.

Go to article

Authors and Affiliations

Przemysław Podulka
Download PDF Download RIS Download Bibtex

Abstract

Non-measured points (NMPs) are one of vital problems in optical measurement. The number and location of NMPs affect the obtained surface texture parameters. Therefore, systematic studying of the NMP is meaningful in understanding the instrument performance and optimizing measurement strategies. This paper investigates the influence of measurement settings on the non-measured points ratio (NMPR) using structured illumination microscopy. It is found that using a low magnification lens, high exposure time, high dynamic range (HDR) lighting levels, and low vertical scanning interval may help reduce the NMPR. In addition, an improved approach is proposed to analyze the influence of NMP on areal surface texture parameters. The analysis indicates that the influence of NMP on some parameters cannot be ignored, especially for extreme height parameters and feature parameters.
Go to article

Authors and Affiliations

Zhen Li
1
ORCID: ORCID
Sophie Gröger
1

  1. Chemnitz University of Technology, Department of Production Measuring Technology, Reichenhainer Straße 70, 09126 Chemnitz, Germany

This page uses 'cookies'. Learn more