Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 32
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Pb(II)-resistant bacterium was isolated from heavy metal-contained soils and used as a biosorbentto remove Pb(II). The strain was identified as Enterobacter sp. based on the 16S rRNA sequence analysis. Theeffect of biosorption properties (pH value, Pb(II) concentration, bacterial concentration and temperature) onPb(II) was investigated by batch experiments. Results of FTIR and XPS showed that the biosorption process mainly involved some oxygen-containing groups (-OH and -COOH groups). The experimental results and equilibrium data were fitted by pseudo-second-order kinetic model and Langmuir model, respectively. The experimental biosorption isotherms fitted the Langmuir model, and the maximum biosorption capacity was 40.75 mg/g at 298 K. The calculated ΔGо and ΔHо were –4.06 and 14.91(kJ/mol), respectively, which indicated that biosorption process was spontaneous and endothermic. Results show that Enterobacter sp. will be an efficient biosorbent for Pb(II) removal.
Go to article

Bibliography

  1. Abdi, O. & Kazemi, M. (2015). A review study of biosorption of heavy metals and comparison between different biosorbents. Journal of Materials and Environmental Science, 6, pp. 1386-1399.
  2. Ahalya, N., Ramachandra, T.V. & Kanamadi, R.D. (2003). Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, pp. 235-250.
  3. Baruah, R., Kalita, D.J., Saikia, B.K., Gautam, A., Singh, A.K. & Deka Boruah, H.P. (2016). Native hydrocarbonoclastic bacteria and hydrocarbon mineralization processes. International Biodeterioration & Biodegradation, 112, pp. 18-30. DOI: 10.1016/j.ibiod.2016.04.032
  4. Baysal, Z., Cinar, E., Bulut, Y., Alkan, H. & Dogru, M. (2009). Equlibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. Journal of Hazardous Materials, 161, pp. 62-67. DOI: 10.1016/j.jhazmat.2008.02.122
  5. Bobik, M., Korus, I. & Dudek, L. (2017). The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions, Archives of Environmental Protection,43, pp. 3-9. DOI: 10.1515/aep-2017-0017
  6. Boyanov, M. I., Kelly, S. D., Kemner, K M., Bunker, B. A., Fein, J. B. & Fowle, D. (2003). Adsorption of cadium to Bacillus subtilis bacterial cell walls: A pH-dependent X-ray absorption fine structure spectroscopy study. Geochimica Cosmochimica Acta, 67, pp. 3299-3311. DOI: 10.1016/S0016-7037(02)01343-1
  7. Bulut, Y., Gozubenli, N. & Aydin, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Journal of Hazardous Materials, 144, pp. 300-306. DOI: 10.1016/j.jhazmat.2006.10.027
  8. Chen, C., Hu, J. & Wang, J. L. (2020). Biosorption of uranium by immobilized Saccharomyces cerevisiae. Journal of Environmental Radioactivity, 213, pp. 106-158. DOI: 10.1016/j.jenvrad.2020.106158
  9. Chen, Z., Pan, X., Chen, H., Guan, X. & Lin, Z. (2016). Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from lead-zinc mine tailings. Journal of Hazardous Materials, 301, pp. 531-537. DOI: 10.1016/j.jhazmat.2015.09.023
  10. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2005). Biosorption of Cr(III), Cd(II), and Cu(II) ions by blue-green algae Spiruline sp: Kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, pp. 75-84. DOI: 10.1016/j.chemosphere.2004.10.005
  11. Chojnacka, K., Chojnacki, A. & Gorecka, H. (2004). Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy, 73, pp. 147-153.
  12. Chuah, T. G., Jumasiah, A., Azni, I., Katayon, S. & Choong, S. Y. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175, pp. 305-316. DOI: 10.1016/j.hydromet.2003.10.003
  13. Çolak, F., Atar, N., Yazıcıoğlu, D. & Olgun, A. (2011). Biosorption of lead from aqueous solutions by bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal, 173, pp. 422-428. DOI: 10.1016/j.cej.2011.07.084
  14. Fourest, E. & Roux, J. C. (1992). Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology Biotechnology, 37, pp. 399-403.
  15. Gupta, V. K., Shrivastava, A. K. & Jain, N. (2001). Biosorption of chromium from aqueous solutions by green algae Spirogyra species. Water Research, 35, pp. 4079-4085. DOI: 10.1016/S0043-1354(01)00138-5
  16. Han, R., Li, H., Li, Y., Zhang, J., Xiao, H. & Shi, J. (2006). Biosorption of copper and lead ions by waste beer yeast. Journal of Hazardous Materials, 137, pp. 1569-1576. DOI: 10.1016/j.jhazmat.2006.04.045
  17. Holan, Z. R., Volesky, B. & Prasetyo, I. (1993). Biosorption of cadmium by biomass of marine algae. Biotechnology and Bioengineering, 41, pp. 819-825.
  18. Kratochvil, D. & Volesky, B. (1998). Advance in the biosorption of heavy metals. Trends Biotechnolgy, 16, pp. 291-300. DOI: 10.1016/S0167-7799(98)01218-9
  19. Ku, Y. & Jung, I. L. (2001). Photocatalytic reduction of Cr(IV) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Research, 35, pp. 135-142. DOI: 10.1016/S0043-1354(00)00098-1
  20. Lee, Y. C. & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102, pp. 5297-5304. DOI: 10.1016/j.biortech.2010.12.103
  21. Li, D. D., Xu, X. J., Yu, H. W. & Han, X. R. (2017). Characterization of Pb(II) biosorption by psychrotrophic strain Pseudomonas sp. 13 isolated from permafrost soil of Mohe wetland in Northeast China. Journal of Environmental Management, 196, pp. 8-15. DOI: 10.1016/j.jenvman.2017.02.076
  22. Liu, L., Liu, J., Liu, X. T., Dai, C. W., Zhang, Z. X., Song, W. C. & Chu, Y. (2019). Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. Journal of Environmental Radioactivity, 203, pp. 117-124. DOI: 10.1016/j.jenvrad.2019.03.008
  23. Liu, L., Chen, J. W., Liu, F., Song, W. C. & Sun, Y. B. (2021). Bioaccumulation of uranium by Candida utilis: Investigated by water chemistry and biological effects. Environmental Research, 194, 110691. DOI: 10.1016/j.envres.2020.110691
  24. Liu, L., Zhang, Z. X., Song, W. C. & Chu, Y. N. (2018). Removal of radionuclide U(VI) from aqueous solution by the resistant fungus Absidia corymbifera. Journal of Radioanalytical and Nuclear Chemistry, 318, pp. 1151-1160. DOI: 10.1007/s10967-018-6209-2
  25. Lu, N. Q., Hu, T. J., Zhai, Y. B., Qin, H. Q., Aliyeva, J. & Zhang, H. (2020). Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environmental Research, 182, 109061. DOI: 10.1016/j.envres.2019.109061
  26. Lu, X., Zhou, X. J. & Wang, T. S. (2013). Mechanism of uranium(VI) uptake by saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies. Journal of Hazardous Materials, 262, pp. 297-303. DOI: 10.1016/j.jhazmat.2013.08.051
  27. Ma, X. M., Cui, W. G., Yang, L., Yang, Y. Y., Chen, H. F. & Wang, K. (2015). Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Bioresource Technology, 185, pp. 70-78. DOI: 10.1016/j.biortech.2015.02.074
  28. Naik, B. R., Suresh, C., Kumar, N. S. V., Seshaiah, K. & Reddy, A. V. R. (2017). Biosorption of Pb(II) and Ni(II) ions by chemically modified Eclipta alba stem powder: kinetics and equilibrium studies. Separation Science and Technology, 52, pp. 1717-1732. DOI: 10.1080/01496395.2017.1298614
  29. Naik, M. M. & Dubey, S. K. (2013). Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environment Safety, 98, pp. 1-7. DOI: 10.1016/j.ecoenv.2013.09.039
  30. Naseem, R. & Tahir, S. S. (2011). Removal of Pb(II) from aqueous-acidic solutions by using bentonite as an adsorbent. Water Researce, 35, pp. 3982-3986. DOI: 10.1016/S0043-1354(01)00130-0
  31. Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B. & Guven, K. (2009). Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. Decanicus and Geobacillus thermoleovorans sub. Sp. Stromboliensis: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 152, pp. 195-206. DOI: 10.1016/j.cej.2009.04.041
  32. Raize, O., Argaman, Y. & Yannai, S. (2004). Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnology and Bioengineering, 87, pp. 451-458. DOI: 10.1002/bit.20136
  33. Ramrakhiani, L., Ghosh, S. & Majumdar, S. (2016). Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a Review. Applied Biochemistry and Biotechnology, 180, pp. 41-78. DOI: 10.1007/s12010-016-2083-y
  34. Ren, G., Jin, Y., Zhang, C., Gu, H. & Qu, J. (2015). Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicology and Environment Safety, 117, pp. 141-148. DOI: 10.1016/j.ecoenv.2015.03.033
  35. Sag, Y. & Kutsal, T. (2000). Determination of activation energies of heavy metal ions on Zoogloe ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 35, pp. 145-151.
  36. Saha, G. C., Hoque, M., Miah, M., Holze, R., Chowdhury, D.A., Khandaker, S. & Chowdhury, S. (2017). Biosorptive removal of lead from aqueous solutions onto taro (colocasiaesculenta(l.) schott) as a low cost bioadsorbent: characterization, equilibria, kinetics and biosorption-mechanism studies. Journal of Environmental Chemical Engineering, 5, 2151-2162. DOI:10.1016/j.jece.2017.04.013
  37. Sahin, Y. & Ozturk, A. (2005). Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, pp. 1895-1901. DOI: 10.1016/j.procbio.2004.07.002
  38. Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., Chergui, A. & Kerchich, Y. (2004). Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochemical Engineering Journal, 19, pp. 127-135. DOI: 10.1016/j.bej.2003.12.007
  39. Shroff, K. A. & Vaidya, V. K. (2011). Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chemical Engineering Journal, 171, pp. 1234-1245. DOI: 10.1016/j.cej.2011.05.034
  40. Siripongvutikorn, S., Asksonthong, R. & Usawakesmanee, W. (2016). Evaluation of harmful heavy metal (Hg, Pb and Cd) reduction using Halomonas elongata and Tetragenococcus halophilus for protein hydrolysate product. Functional Foods in Health & Disease, 6, pp. 195-205. DOI: 10.31989/ffhd.v6i4.240
  41. Song, W. C., Wang, X. X., Chen, Z. S., Sheng, G. D., Hayat, T., Wang, X. K. & Sun, Y. (2018). Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As (V): Batch and XAFS investigation. Environmental Pollution, 237, pp. 228-236. DOI: 10.1016/j.envpol.2018.02.060
  42. Song, W. C., Wang, X. X., Wen, T., Yu, S. J., Zou, Y. D. & Sun, Y. B. (2016). Immobilization of As(V) in Rhizopus oryzae investigated by batch and XAFS techniques. ACS Omega, 1, pp. 899-906. DOI: 10.1021/acsomega.6b00260
  43. Tabaraki, R., Nateghi, A. & Ahmady-Asbchin, S. (2014). Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. International Biodeterioration Biodegradation, 93, pp. 145-152. DOI: 10.1016/j.ibiod.2014.03.022
  44. Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., Ren, X., Ye, S., Bo, P. & Feng, H. (2017). Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, pp. 160-169. DOI: 10.1016/j.cej.2017.11.048
  45. Tunali, S., Cabuk, A. & Akar, T. (2006). Removal of lead and copper ions from soil. Chemcal Engineering Journal, 115, pp. 203-211. DOI: 10.1016/j.cej.2005.09.023
  46. Uzun, Y. & Şahan, T. (2017). Optimization with Response Surface Methodology of biosorption conditions of Hg(II) ions from aqueous media by Polyporus Squamosus fungi as a new biosorbent. Archives of Environmental Protection,43, pp. 37-43. DOI 10.1515/aep-2017-0015
  47. Wang, J. L. & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24, pp. 427-451.
  48. Wang, N., Xu, X., Li, H., Wang, Q., Yuan, L. & Yu, H. (2017). High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined Pseudomonas putida and Talaromyces amestolkiae biomass for Pb(II) removal from wastewater. Bioresource Technology, 233, pp. 58-66. DOI: 10.1016/j.biortech.2017.02.069
  49. Wang, T. S., Zheng, X. Y., Wang, X. Y., Lu, X. & Shen, Y. H. (2017). Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. Journal of Environmental Radioactivity, 167, pp. 92-99. DOI: 10.1016/j.jenvrad.2016.11.018
  50. Zheng, X. Y., Shen, Y. H., Wang, X. R., & Wang, T. S. (2018). Effect of pH on uranium(VI) biosorption and biomineralization by Saccharomyces cerevisiae. Chemosphere, 203, pp.109-116. DOI: 10.1016/j.chemosphere.2018.03.165
Go to article

Authors and Affiliations

Lei Liu
1 2
Mengya Xia
1
Jianwen Hao
1
Haoxi Xu
1
Wencheng Song
2 3

  1. School of Environment and Chemical Engineering, Anhui Vocational and Technical College,Hefei, 230011, P.R. China
  2. Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China
  3. Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology,Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

The new efficient method of modeling and thermodynamic analysis of power engineering systems has been presented. With its help a comparison of different structures and investigation of the influence of a particular constituent process onto the whole system efficiency is possible. The shaft work or the exergy is the main thermodynamic quantity taken into account in analyses, and the appropriate dimensionless modeling parameter has been introduced.

Go to article

Authors and Affiliations

Jarosław Kozaczka
Pavel Kolat
Download PDF Download RIS Download Bibtex

Abstract

As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.

Go to article

Authors and Affiliations

Yun-Yu Chen
Download PDF Download RIS Download Bibtex

Abstract

The study investigates chemical modifications of coal fly ash (FA) treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II) and Pb(II) ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K) and pH (2 - 11) values. The maximum Cd(II) and Pb(II) ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS) and images of scanning electron microscope (SEM). The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II) and Pb(II) ion uptake from polluted waters.

Go to article

Authors and Affiliations

Eleonora Sočo
Jan Kalembkiewicz
Download PDF Download RIS Download Bibtex

Abstract

An equiatomic multi-component alloy Ni20Ti20Ta20Co20Cu20 (at. %) was obtained using vacuum arc melting. In order to characterize such an alloy, microstructure analysis has been performed using Scanning and Transmission Electron Microscopy, Electron Backscattered Diffraction, X-ray Diffraction and Energy Dispersive X-ray Spectroscopy techniques. Microstructure analysis revealed the presence of one rhombohedral and two cubic phases. Energy Dispersive X-ray Spectroscopy measurements revealed that both observed phases include five chemical elements in the structure. Using Rietveld refinement approach the lattice parameters were refined for the observed phases.

Go to article

Authors and Affiliations

K. Glowka
M. Zubko
P. Świec
K. Prusik
G. Dercz
D. Stróż
Download PDF Download RIS Download Bibtex

Abstract

Agricultural residues rich in lignocellulosic biomass are low-cost and sustainable adsorbents widely used in water treatment. In the present research, thermodynamics, kinetics, and equilibrium of nickel(II) and lead(II) ion biosorption were studied using a corncob (Zea mays). The experiments were performed in a batch system evaluating the effect of tempera-ture and dose of adsorbent. Langmuir and Freundlich isotherms were used to study the equilibrium. Thermodynamic and kinetic parameters were determined using kinetic models (pseudo-first order, pseudo-second order, Elovich). Biosorbent characteristics were studied by Fourier-transform infrared spectroscopy, Scanning Electron Microscopy and Energy-dispersive X-ray spectroscopy. It was found that the hydroxyl, carboxyl, and phenolic groups are the major contributors to the removal process. Besides, Pb(II) ions form micro-complexes on the surface of the biomaterial while Ni(II) ions form bonds with active centers. It was found that the highest Ni(II) removal yields were achieved at 0.02 g of adsorbent and 70°C, while the highest Pb(II) removal yields were achieved at 0.003 g and 55°C. A maximum Ni(II) adsorption capacity of 3.52 mg∙g–1 (86%) and 13.32 mg∙g–1 (94.3%) for Pb(II) was obtained in 250 and 330 min, respectively. Pseudo-first or-der and pseudo-second order models best fit experimental data, and Langmuir and Freundlich models well describe the iso-therm of the process. Thermodynamic parameters (ΔH0, ΔG0, ΔS0) suggest that the adsorption process of both cations is exothermic, irreversible, and not spontaneous.
Go to article

Bibliography

ABDUL-HAMEED H.M., AL JUBOURY M.F. 2020. MgFe-doubled layers hydroxide intercalated with low cost local adsorbent using for removal of lead from aqueous solution. Journal of Water and Land Development. No. 45 (IV–VI) p. 10–18. DOI 10.24425/jwld.2020.133041.
BABAZADEH R., RAZMI J., PISHVAEE M.S, RABBANI M. 2017. A sustainable second-generation biodiesel supply chain net¬work design problem under risk. Omega. Vol. 66 p. 258–277. DOI 10.1016/J.OMEGA.2015.12.010.
BARDESTANI R., ROY C., KALIAGUINE S. 2019. The effect of biochar mild air oxidation on the optimization of lead(II) adsorption from wastewater. Journal of Environmental Mana¬gement. Vol. 240 p. 404–420. DOI 10.1016/j.jenvman.2019.03.110.
BUREVSKA K., MEMEDI H., LISICHKOV K., KUVENDZIEV S., MARINKOVSKI M., RUSESKA G., GROZDANOV A. 2017. Biosorption of nickel ions from aqueous solutions by natural and modified peanut husks: Equilibrium and kinetics. Water and Environment Journal. Promoting Sustainable Solutions. Vol. 32. Iss. 2 p. 276–284. DOI 10.1111/wej.12325.
CHEN Y., WANG H., ZHAO W., HUANG S. 2018. Four different kinds of peels as adsorbents for the removal of Cd (II) from aqueous solution: Kinetics, isotherm and mechanism. Journal of the Taiwan Institute of Chemical Engineers. Vol. 88. p. 146–151. DOI 10.1016/j.jtice.2018.03.046.
CHERIK D., LOUHAB K. 2018. A kinetics, isotherms, and thermo¬dynamic study of Diclofenac adsorption using activated carbon prepared from olive stones. Journal of Dispersion Science and Technology. Vol. 39. No. 6 p. 814–825. DOI 10.1080/01932691.2017.1395346.
DAI Y., SUN ., WANG W., LU L., LIU M., LI J., ... ZHANG Y. 2018. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere. Vol. 211 p. 235–253. DOI 10.1016/j.chemosphere.2018.06.179.
DOBROSZ-GÓMEZ I., GÓMEZ M., SANTA C. 2018. Optimización del proceso de adsorción de Cr(VI) sobre carbón activado de origen bituminoso [Optimization of the Cr(VI) adsorption process on activated carbon of bituminous origin]. Información Tecnológica. Vol. 29. No. 6 p. 43–56. DOI 10.4067/ S0718-07642018000600043.
GAŁCZYŃSKA M., MAŃKOWSKA N., MILKE J., BUŚKO M. 2019. Possibilities and limitations of using Lemna minor, Hydro-charis morsus-ranae and Ceratophyllum demersum in removing metals with contaminated water. Journal of Water and Land Development. No. 40 p. 161–173. DOI 10.2478/jwld-2019-0018.
HAROON H., ASHFAQ T., GARDAZI S.M.H., SHERAZI T.A., ALI M., RASHID N., BILAL M. 2016. Equilibrium kinetic and thermo-dynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors. Korean Journal of Chemical Engineering. Vol. 33 No. 10 p. 2898–2907. DOI 10.1007/s11814-016-0160-0.
HERNÁNDEZ RODIGUEZ M., YPERMAN J., CARLEER R., MAGGEN J., DADDI D., GRYGLEWICZ G., VAN DER BRUGGEN B., FALCÓN HERNÁNDEZ J., OTERO CALVIS A. 2018. Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. Journal of Environmental Chemical Engineering. Vol. 6. No. 1 p. 1161–1170. DOI 10.1016/j.jece.2017.12.045.
IBISI N.E., ASOLUKA C.A. 2018. Use of agro-waste (Musa paradisiaca peels) as a sustainable biosorbent for toxic metal ions removal from contaminated water. Chemistry International. Vol. 4. No. 1 p. 52–59.
JOHARI K., SAMAN N., SONG S.T., CHIN C.S., KONG H., MAT H. 2016. Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. International Biodeterioration and Biodegra-dation Vol. 109 p. 45–52. DOI 10.1016/j.ibiod.2016.01.004.
KAPLAN INCE O., INCE M., YONTEN V., GOKSU A. 2017. A food waste utilization study for removing lead(II) from drinks. Food Chemistry. Vol. 214 p. 637–643. DOI 10.1016/ j.foodchem.2016.07.117.
LIU Z., DENG X., WANG M., CHEN J., ZHANG A., GU Z., ZHAO C. 2009. BSA-modified polyethersulfone membrane: Prepara-tion, characterization and biocompatibility. Journal of Biomaterials Science, Polymer Edition. DOI 10.1163/156856209X412227.
MANIRETHAN V., GUPTA N., BALAKRISHNAN R.M., RAVAL K. 2019. Batch and continuous studies on the removal of heavy metals from aqueous solution using biosynthesised melanin-coated PVDF membranes. Environmental Science and Pollution Research. Vol. 27 p. 24723–24737. DOI 10.1007/ s11356-019-06310-8.
MANJULADEVI M., ANITHA R., MANONMANI S. 2018. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Applied Water Science. Vol. 8 No. 1 p. 36. DOI 10.1007/s13201-018-0674-1.
NASEEM K., HUMA R., SHAHBAZ A., JAMAL J., ZIA UR REHMAN M., SHARIF A., …, FAROOQI Z.H. 2019. Extraction of heavy metals from aqueous medium by husk biomass: Adsorption isotherm, kinetic and thermodynamic study. Zeitschrift für Physikalische Chemie. Vol. 233 Iss. 2 p. 201–223. DOI 10.1515/zpch-2018-1182.
OUHIMMOU M., RÖNNQVIST M., LAPOINTE L.-A. 2019. Assessment of sustainable integration of new products into value chain through a generic decision support model: An application to the forest value chain. Omega. Vol. 99, 102173. DOI 10.1016/J.OMEGA.2019.102173.
PRADHAN P., ARORA A., MAHAJANI S.M. 2018. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy for Sustainable Development. Vol. 43 p. 1–14. DOI 10.1016/j.esd.2017.11.005.
RAVAL N.P, SHAH P.U., SHAH N.K. 2016. Adsorptive removal of nickel(II) ions from aqueous environment: A review. Journal of Environmental Management. Vol. 179 p. 1–20. DOI 10.1016/j.jenvman.2016.04.045.
SHEN Z., ZHANG Y., MCMILLAN O., JIN F, AL-TABBAA A. 2017. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk. Environmental Science and Pollution Research International. Vol. 24. No. 14 p. 12809–12819.
SINGH S., SHUKLA S. 2017. Theoretical studies on adsorption of Ni(II) from aqueous solution using Citrus limetta peels. Environmental Progress & Sustainable Energy. Vol. 36. No. 3 p. 864–872.
SIREGAR A., SULISTYO I., PRAYOGO N.A. 2020. Heavy metal contamination in water, sediments and Planiliza subviridis tissue in the Donan River, Indonesia. Journal of Water and Land Development. Vol. 45 (IV–VI) p. 157–164. DOI 10.24425/jwld.2020.133057.
TEJADA-TOVAR C., GONZALEZ-DELGADO A., VILLABONA-ORTIZ A. 2019a. Characterization of residual biomasses and its application for the removal of lead ions from aqueous solution. Applied Sciences. Vol. 9. No. 21, 4486. DOI 10.3390/app9214486.
TEJADA-TOVAR C., VILLABONA-ORTÍZ A., GONZÁLEZ-DELGADO Á.D., GRANADOS-CONDE C., JIMÉNEZ-VILLADIEGO M. 2019b. Kinetics of mercury and nickel adsorption using chemically pretreated cocoa (Theobroma cacao) husk. Transactions of the ASABE. Vol. 62. No. 2 p. 461–466. DOI 10.13031/trans.13133.
VALENCIA J.A.R., GONZÁLEZ J.P., JIMENEZ-PITRE I., MOLINA-BOLÍVAR G. 2019. Physico-chemical treatment of waste water contaminated with heavy metals in the industry of metallic coatings. Journal of Water and Land Development. Vol. 43 p. 171–176. DOI 10.2478/jwld-2019-0075.
YI Y., LV J., LIU Y., WU G. 2017. Synthesis and application of modified litchi peel for removal of hexavalent chromium from aqueous solutions. Journal of Molecular Liquids. Vol. 225 p. 28–33. DOI 10.1016/j.molliq.2016.10.140.
YIN W., ZHAO C., XU J., ZHANG J., GUO Z., SHAO Y. 2019. Removal of Cd(II) and Ni(II) from aqueous solutions using activated carbon developed from powder-hydrolyzed-feathers and Trapa natans husks. Colloids and Surfaces A: Physico-chemical and Engineering Aspects. Vol. 560 p. 426–433. DOI 10.1016/j.colsurfa.2018.10.031.

Go to article

Authors and Affiliations

Candelaria Tejada-Tovar
1
ORCID: ORCID
Ángel Villabona-Ortíz
1
ORCID: ORCID
Angel Dario Gonzalez-Delgado
1
ORCID: ORCID

  1. University of Cartagena, Avenida del Consulado Calle 30 No. 48-152, Cartagena, Bolívar, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Processing of metal alloys in semi-solid state is a way of producing many near net-shape parts and nowadays is commercially successful. Particular behaviour of alloys in the partially liquid state, having non-dendritic microstructure, is a base for thixoforming processing. Processing materials in the semi-solid state concerns alloys with relatively wide solidification range. Thermodynamic modelling can be used as a one of a potential tools that allow to identify alloys with proper temperature range. It means that the key feature of alloys suitable for thixoforming is a widely enough melting range, allowing for precise control of material temperature. The data gathered from thermodynamics calculations can also pay off in the industrial thixoforming processes design. The goal of this paper is to identify copper alloys which can be successfully shaped in the semi-solid state. Apart to thermodynamic calculations, the observations on high temperature microscope was carried out. During experiments the solidus, liquidus and also deformation temperatures can be determined. An experimental work allows confirming results obtained within the confines of thermodynamic calculations and firstly to determine the deformation temperatures which are the optimal for shaping processes. The basic achievement of this work is an identification of copper alloy groups possible for shaping in the semi-solid state. At the first part of the paper, the basic criteria of suitable alloys were described. Next, both the solid fraction curves for copper alloys with different alloying elements using ProCAST software and the phase diagrams were determined to identify the solidification temperature ranges of these alloys. In the second part of these paper, the identification of the deformation temperatures was carried out with use of high temperature microscope observation.
Go to article

Authors and Affiliations

A. Madetko
1
ORCID: ORCID
K. Sołek
1
ORCID: ORCID
P. Drożdż
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Low manganese and sulfur gray irons were produced by adding inoculant base Fe-Si with small amounts of Al and Ca in the ladle. The effect of the cast thickness, inoculant amount and shakeout time of the green sand molds were studied on the graphite flake formation by microscopically techniques. A thermodynamic analysis was carried out for the cast iron produced with the FactSage 7.2 software. Stability phase diagrams were obtained for both gray cast irons to different manganese (0.1 to 0.9 wt.%) and sulfur (0.01 to 0.12 wt.%) amounts to 1150°C. It was shown that lower amounts of manganese and sulfur allow forming the 3Al2O3·2SiO2, Al2O3, and ZrO2 solid compounds. The thermodynamic results match with those obtained by SEM-EDS. It is possible to form MnS particles in the liquid phase when the solubility product (%Mn) × (%S) equals 0.042 and 0.039 for heats A and B, respectively.

Go to article

Authors and Affiliations

G. Reyes-Castellanos
A. Cruz-Ramírez
E. Colin-García
V.H. Gutiérrez-Pérez
Download PDF Download RIS Download Bibtex

Abstract

The carbothermic reduction of calcined magnesite in vacuum was studied. By thermodynamic analysis, the starting temperature of reduction reaction dropped from 2173K to 1523K when system pressure dropped from 1 atmosphere to 100 Pa. The experiments were carried out at different conditions under 10~100 Pa and the experimental results shown that the reduction extent of MgO improved by increasing the reaction temperature and time, the pellet forming pressure as well as adding fluoride as catalyst. The rate-determining step of carbothermic reduction process was gas diffusion with the apparent activation energy of 241.19~278.56 kJ/mol.
Go to article

Authors and Affiliations

Qifeng Tang
1
ORCID: ORCID
Jinqing Ao
1
ORCID: ORCID
Biyou Peng
1
ORCID: ORCID
Biao Guo
1
ORCID: ORCID
Tao Yang
1
ORCID: ORCID

  1. Xihua University, College of Materials Science and Engineering, Chengdu 610039, PR China
Download PDF Download RIS Download Bibtex

Abstract

This brief note focuses on a simple fluid, i.e., a homogeneous, chemically inert, and electrically neutral fluid, for which, in the linear nonequilibrium regime, the thermodynamic state is expressed by a relation between pressure, temperature, and density. The approach based on the elementary scales is used to check the validity range of both the classical irreversible thermodynamics and the extended irreversible thermodynamics. The achieved result reveals that the classical irreversible thermodynamics fails in providing an adequate response when the mechanical solicitations exceed limit values.
Go to article

Bibliography

[1] Gad-el-Hak M.: The fluid mechanics of microdevices-the Freeman scholar lecture. J. Fluids Eng. 121(1999), 1, 5–33.
[2] Auriault J.-L.: Homogenization theory applied to porous media. Poromechanics 3(2005), 113–120.
[3] Di Nucci C., Celli D., Fischione P., Pasquali D.: Elementary scales and the lack of Fourier paradox for Fourier fluids. Meccanica 57(2022), 251–254.
[4] Jou D., Casas-Vázquez J., Lebon G.: Extended Irreversible Thermodynamics revisited (1988–98). Rep. Prog. Phys. 62(1999), 7, 1035–1142.
[5] Lenarczyk M., Domanski R.: Investigation of non-Fourier thermal waves interaction in a solid material. Arch. Thermodyn. 40(2019), 1, 115–126.
[6] Othman M.I.A., Abouelregal A.E.E.: The effect of pulsed laser radiation on a thermoviscoelastic semi-infinite solid under two-temperature theory. Arch. Thermodyn. 38(2017), 3, 77–99.
[7] Di Nucci C., Pasquali D., Celli D., Pasculli A., Fischione P., Di Risio M.: Turbulent bulk viscosity. Eur. J. Mech. B-Fluid. 84(2020), 446–454.
[8] Durst F.: Fluid Mechanics: An Introduction to the Theory of Fluid Flows. Springer- Verlag, Berlin – Heidelberg 2008.
[9] Frost W., Moulden T.H. (Eds.): Handbook of Turbulence: Vol. 1 Fundamentals and Applications. Plenum Press, New York – London 1977.
[10] Gallavotti G.: Foundations of Fluid Dynamics. Springer-Verlag, Berlin – Heidelberg 2002.
[11] Petersen K.B., Pedersen M.S.: The Matrix Cookbook. Tech. Univ. of Denmark, 2008.
[12] Panton R.: Incompressible Flow. John Wiley & Sons, Hoboken 2013.
Go to article

Authors and Affiliations

Carmine Di Nucci
1
Daniele Celli
1
Piera Fischione
1
Davide Pasquali
1

  1. Environmental and Maritime Hydraulic Laboratory (LIAM), Civil, Construction-Architectural and Environmental Engineering Department (DICEAA), University of L’Aquila, Piazzale Ernesto Pontieri 1, Monteluco di Roio, 67100 L’Aquila, Italy
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamic descriptions of the ternary Fe-B-Cu system and its binary sub-system B-Cu aredeveloped in the context of a new Fe-B-X (X = Cr, Cu, Mn, Mo, Ni, Si, Ti, V, C) database. The thermodynamic parameters of the other binary sub-systems (Fe-B and Fe-Cu) are taken from earlier assessments. Experimental thermodynamic and phase equilibrium data available in the literature have been used for the optimization of the Fe-B-Cu and B-Cu systems’ thermodynamic parameters. The solution phases are described using a substitutional solution model and the compounds (two borides of the Fe-B system) are treated as stoichiometric phases. A good agreement was obtained between the calculated and the experimental thermodynamic and phase equilibrium data.

Go to article

Authors and Affiliations

Jyrki Miettinen
Ville-Valtteri Visuri
Timo Fabritius
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamic descriptions of the ternary Fe-B-Si system and its binary sub-system, B-Si, are developed in the context of a new Fe-B-X (X = Cr, Ni, Mn, V, Si, Ti, C) database. The thermodynamic parameters of the other binary sub-systems, Fe-Si and Fe-B, are taken from earlier assessments. Experimental thermodynamic and phase equilibrium data available in the literature has been used for the optimization of the thermodynamic parameters of the Fe-B-Si and B-Si systems. The solution phases are described using substitutional solution model and the compounds (silicides and borides) are treated as stoichiometric phases. The calculated and experimental thermodynamic and phase equilibrium data were found to be in good agreement.

Go to article

Authors and Affiliations

J. Miettinen
V-V. Visuri
T. Fabritius
N. Milcheva
G. Vassilev
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamic optimizations of the ternary Fe-B-Ti system and its binary sub-system, B-Ti are presented. The thermodynamic descriptions of the other binaries, Fe-Ti and Fe-B, are taken from the earlier studies slightly modifying the Fe-Ti system assessment. The adjustable parameters of the Fe-B-Ti and B-Ti systems are optimized in this study using the experimental thermodynamic and the phase equilibrium data from the literature. The solution phases of the system are described using the substitutional solution model and the compounds (including borides) are treated as stoichiometric phases. The results show a good correlation between the calculated and measured thermodynamic and phase equilibrium data.

Go to article

Authors and Affiliations

J. Miettinen
V-V. Visuri
T. Fabritius
N. Milcheva
G. Vassilev
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamic description of the Fe-B-C system in its iron-rich corner is developed in the context of a new Fe-B-X (X = Cr, Ni, Mn, Si, Ti, V, C) database. The thermodynamic parameters of the binary sub-systems, Fe-B, Fe-C and B-C, are taken from earlier assessments modifying the B-C description. The parameters of the Fe-B-C system are optimized in this study using experimental thermodynamic and phase equilibrium data from the literature. Liquid, beta-rhombo-B and graphite phases are described using the substitutional solution model, while the ferrite (bcc), the austenite (fcc), the cementite (M3C) and the M23C6 phases are described with the sublattice model and the borides, Fe2B, FeB and B4C, are treated as stoichiometric phases. A good correlation was obtained between the calculated and the experimental thermodynamic and phase equilibrium data. The description is recommended to be used at the composition region of wt% C + wt% B < 15 and at temperatures below 2700oC.

Go to article

Authors and Affiliations

J. Miettinen
V.-V. Visuri
T. Fabritius
G. Vassilev
Download PDF Download RIS Download Bibtex

Abstract

Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.

Go to article

Authors and Affiliations

Zheshu Ma
Jieer Wu
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of thermodynamic analysis of the crude distillation units of two refineries in Nigeria. The analysis was intended to assess the thermodynamic efficiencies of the refineries and proffer methods of improving the efficiencies. Presented results show the atmospheric distillation units of the refineries have 33.3% and 31.6% exergetic efficiencies and 86.5% and 74.6% energetic efficiencies, respectively. Modifications of the operating and feed conditions of the refineries resulted in increased exergetic efficiencies for as much as 62.3% and 38.7% for the refineries. Thermodynamic analysis of the refineries can bring about efficiency improvement and effectiveness of the refineries.

Go to article

Authors and Affiliations

Funmilayo Nihinlola Osuolale
Ambrose Nwora Anozie
Download PDF Download RIS Download Bibtex

Abstract

Most satellites stationed in space use catalytic propulsion systems for attitude control and orbit adjustment. Hydrazine is consumed extensively as liquid monopropellant, in the thrusters. Catalytic reactor is the most important section in the catalytic thruster. Ammonia and nitrogen gases are produced as a result of complete catalytic decomposition of hydrazine in the reactor, causing an increase in temperature and a rise in specific impulse. Ammonia is subsequently decomposed, leading to nitrogen and hydrogen gases. Decomposition of ammonia leads to a decrease in temperature, molecular weight and specific impulse. The latter phenomenon is unavoidable. The effect of ammonia decomposition on the reactor temperature, molecular weight of gaseous products and conclusively on specific impulse was studied in this article. At adiabatic state, thermodynamic analysis revealed that the maximum and minimum temperatures were 1655 K and 773 K, respectively. The highest molecular weight was obtained at ammonia conversion of zero and the lowest when ammonia conversion was 100%. The maximum specific impulse (305.4 S) was obtained at ammonia conversion of zero and completely conversion of ammonia, the minimum specific impulse (about 213.7 s) was obtained. For specific impulse, the result of thermodynamic calculation in this work was validated by the empirical results.

Go to article

Authors and Affiliations

Shahram Pakdehi
Fatemeh Shirvani
Reihaneh Zolfaghari
Download PDF Download RIS Download Bibtex

Abstract

Recent climate changes stimulate the search and introduction of solutions for the reduction of the anthropogenic effect upon the environment. Transition to the oxy-fuel combustion power cycles is an advanced method of CO2 emission reduction. In these energy units, the main fuel is natural gas but the cycles may also work on syngas produced by the solid fuel gasification process. This paper discloses a new highly efficient oxy-fuel combustion power cycle with coal gasification, which utilizes the syngas heat in two additional nitrogen gas turbine units. The cycle mathematics simulation and optimization result with the energy unit net efficiency of 40.43%. Parametric studies of the cycle show influence of the parameters upon the energy unit net efficiency. Change of the cycle fuel from natural gas to coal is followed by a nearly twice increase of the carbon dioxide emission from 4.63 to 9.92 gmCO2/kWh.
Go to article

Bibliography

[1] Letcher T.M.: Why do we have global warming? In: Managing Global Warming. An Interface of Technology and Human Issues . Academic Press, 2019, 3–15.
[2] Rogalev A., Komarov I., Kindra V., Zlyvko O.: Entrepreneurial assessment of sustainable development technologies for power energy sector. Entrep. Sustain. Iss. 6(2018), 1, 429–445.
[3] Bose B.K.: Global warming: Energy, environmental pollution, and the impact of power electronics. IEE Ind. Electron. M. 4(2010), 1, 6–17.
[4] Huang W., Chen W., Anandarajah G.: The role of technology diffusion in a decarbonizing world to limit global warming to well below 2C: An assessment with application of Global TIMES model. Appl. Energ. 208(2017), 291–301.
[5] Ziółkowski P., Zakrzewski W., Badur J., Kaczmarczyk O.: Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2. Arch. Thermodyn. 34(2013), 2, 23–38.
[6] Barba F.C., Sanchez G.M.D., Segui B.S., Darabkhani H.G., Anthony E.J.: A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture. J. Clean. Prod. 133(2016), 971–985.
[7] Kotowicz J., Job M.: Thermodynamic analysis of the advanced zero emission power plant. Arch. Thermodyn. 37(2016), 1, 87–98.
[8] Allam R.J., Palmer M.R., Brown G.W.J., Fetvedt J., Freed D., Nomoto H., Itoh M., Okita N., Jones C.J.: High efficiency and low cost of electricity generation from fossil fuels while elimi-nating atmospheric emissions, including carbon dioxide. Enrgy Proced. 37(2013), 1135–1149.
[9] Khallaghi N., Hanak D. P., Manovic V.: Techno-economic evaluation of nearzero CO2 emission gas-fired power generation technologies: A review. J. Nat. Gas Sci. Eng. 74(2020), 103095.
[10] Scaccabarozzi R., Gatti M., Martelli E.: Thermodynamic analysis and numerical optimization of the NET Power oxy-combustion cycle. Appl. Energ. 178(2016), 505–526.
[11] Rogalev A., Kindra V., Osipov S., Rogalev N.: Thermodynamic analysis of the net power oxy-combustion cycle. In: Proc. 13th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, ETC13, Lausanne April 8-12, 2018, ETC2019-030.
[12] Martins F., Felgueiras C., Smitkova M., Caetano N.: Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12(2019), 6, 964.
[13] Warner K.J., Jones G.A.: The 21st century coal question: China, India, development, and climate change. Atmosphere 10(2019), 8, 476.
[14] Hume S.: Performance evaluation of a supercritical CO2 power cycle coal gasification plant. In: Proc. 5th Int. Symp. of Supercritical CO2 Power Cycles, San Antonio, 2016.
[15] Weiland N., Shelton W., White C., Gray D.: Performance baseline for directfired sCO2 cycles. In: Proc. 5th Int. Symp. of Supercritical CO2 Power Cycles, San Antonio, 2016.
[16] Weiland N., White C.: Techno-economic analysis of an integrated gasification direct-fired supercritical CO2 power cycle. Fuel 212(2018), 613–625.
[17] Zhao Y., Zhao L.,Wang B., Zhang S., Chi J., Xiao Y.: Thermodynamic analysis of a novel dual expansion coal-fueled direct-fired supercritical carbon dioxide power cycle. Appl. Energ. 217(2018), 480–495.
[18] Zhao Y., Wang B., Chi J., Xiao Y.: Parametric study of a direct-fired supercritical carbon dioxide power cycle coupled to coal gasification process. Energ. Convers. Manage. 156(2018), 733–745.
[19] Cormos C.Cr.: Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS). Energy 42(2012), 434–445.
[20] Ebrahimi A., Meratizaman M., Reyhani H. A., Pourali O., Amidpour M.: Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy 90(2015), 1298–1316. [21] Kindra V., Rogalev A., Zlyvko O., Zonov A., Smirnov M., Kaplanovich I.: Research on oxy-fuel combustion power cycle using nitrogen for turbine cooling. Arch. Thermodyn. 41(2020), 4, 191–202.
Go to article

Authors and Affiliations

Vladimir Kindra
1
Andrey Rogalev
1
Olga Vladimirovna Zlyvko
Vladimir Sokolov
1
Igor Milukov
1

  1. National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia
Download PDF Download RIS Download Bibtex

Abstract

In view of the high cost and difficulty of ensuring the accuracy in the measurement of fire smoke velocity, the measurement system developed using platinum resistance temperature detectors and an 8-bit microcontroller, is used to realize the fast measurement of high-temperature fire smoke velocity. The system is based on the thermodynamic method and adopts the Kalman filter algorithm to process the measurement data, so as to eliminate noise and interference, and reduce measurement error. The experimental results show that the Kalman filter algorithm can effectively improve the measurement accuracy of fire smoke velocity. It is also shown that the system has high measurement accuracy, short reaction time, low cost, and is characterized by high performance in the measurement of high-temperature smoke velocity in experiments and practice.
Go to article

Authors and Affiliations

Haoyu Wang
1

  1. Department of Fire Engineering, China Fire and Rescue Institute, Nanyan 4, Changping District, 102202, Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

One of the problems in Russia Power Sector strategy until 2035 is the technologies development for mitigation of harmful emissions by the heat and power production industry. This goal may be reached by the transition to environmentally friendly generation units such as oxy-fuel combustion power cycles that burn organic fuels in pure oxygen. This paper provides the results of research on one of the most efficient oxy-fuel combustion power cycle, which was modified by the usage of nitrogen for turbine cooling. The computer simulation and parametric optimization approaches are described in detail. The net efficiency of the oxy-fuel combustion power cycle in relationship to the carbon dioxide turbine exhaust pressure is shown. Moreover, the influence of the regenerator scheme and modeling parameters on heat performance is obtained. Particularly, it was found that the transition to a scheme with five two-threaded heat exchangers decrease cycle efficiency by 4.2% compare to a scheme with a multi-stream regenerator.

Go to article

Authors and Affiliations

Vladimir Kindra
Andrey Rogalev
Olga Vladimirovna Zlyvko
Alexey Zonov
Matvey Smirnov
Ilya Kaplanovich
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the removal capacity of Pb(II) ions was investigated using the biomass of dried cattle manure in an aqueous solution. The biomaterials were characterized using Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) techniques. The results reveal that the adsorption mechanism may be associated with the interaction between Pb(II) ions and functional groups through aggregation, coordination, ion exchange, microprecipitation, oxidation, and hydrophobicity. The bio-adsorption of the metal was analysed in discontinuous tests; the effect of temperature, pH, agitation, and adsorbent dose was evaluated. The maximum adsorption capacity was determined at pH 7.5, 18°C and 200 rpm. The bio-adsorption of Pb(II) was best fitted to the pseudo-second order model. The experimental data of the isotherm were adjusted to the models of Langmuir, Freundlich and Dubinin–Radushkevich; while Langmuir’s model related better to the experimental data forming a single layer at saturation. The rate of adsorption was rapid, reaching equilibrium after 25 min and removal of 96.8%. Thermodynamic parameters determined that the process was viable, spontaneous, and exothermic. The present study contributes mainly to demonstrating that a biomaterial prepared from bovine manure is a promising adsorbent for heavy metals such as Pb(II). It also reduces the environmental impact of this waste through the generation of greenhouse gases in countries that maintain intensive livestock. Another important aspect is the reduction of the micro- and macronutrients accumulation in soil and contamination of surface waters and aquifers by runoff and seepage during rainy periods.
Go to article

Authors and Affiliations

Candelaria Tejada-Tovar
1
ORCID: ORCID
Humberto Bonilla-Mancilla
2
ORCID: ORCID
Rodrigo Ortega Toro
3
ORCID: ORCID
Ángel Villabona-Ortíz
1
ORCID: ORCID
Manuel Díaz-Illanes
2
ORCID: ORCID

  1. Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  2. Universidad Nacional del Centro del Perú, Faculty of Forestry and Environmental Sciences, Huancayo, Peru
  3. Universidad de Cartagena, Department of Food Engineering, Av. del Consulado St. 30 No. 48-152, 130001, Cartagena de Indias, Colombia
Download PDF Download RIS Download Bibtex

Abstract

On the off chance that methods which reduce the global CO 2 content are unavailable and inefficient, the increasing CO 2 levels will lead to a synchronized rise in temperature across the world. The conversion of this abundant CO 2 into hydrocarbons like CH 4, CH 3OH, CO, HCOOH and hydrogen fuel using different techniques and their use for power could assist with the world’s energy deficiency and solve the CO 2 reduction-energy nexus. In this study, photocatalytic CO 2 conversion by sunlight will be of primary focus since this bears a resemblance with the regular photosynthesis phenomenon. This work also portrays the writings that have narrated the development of mixtures of two or more carbon ions (C 2+) within the photocatalytic reduction of CO 2. This paper thus comprises the energy required for CO 2 photoreduction, the kinetics mechanisms and thermodynamics requirements. The reaction of CO with water and the hydrogenation of CO 2 are covered to understand the gap of Gibb’s free energy between both of the reactions. Likewise, the summary of different metal-based co-catalysts, metal-free co-catalysts and their selectivity towards CO 2 reduction by photocatalysis and reduction of CO 2 into various hydrocarbons, fuel and materials have also been examined.
Go to article

Authors and Affiliations

Romil Gandhi
1
Aashish Moses
1
Saroj Sundar Baral
1

  1. BITS Pilani K.K. Birla Goa Campus, Department of Chemical Engineering, Goa, India – 403726
Download PDF Download RIS Download Bibtex

Abstract

Mechanical, electronic, thermodynamic phase diagram and optical properties of the FeVSb half-Heusler have been studied based on the density functional theory (DFT) framework. Studies have shown that this structure in the MgAgAs-type phase has static and dynamic mechanical stability with high thermodynamic phase consistency. Electronic calculations showed that this compound is a p-type semiconductor with an indirect energy gap of 0.39 eV. This compound’s optical response occurs in the infrared, visible regions, and at higher energies its dielectric sign is negative. The Plasmon oscillations have occurred in 20 eV, and its refraction index shifts to zero in 18 eV.
Go to article

Authors and Affiliations

A. Bagheri
1
A. Boochani
2
S.R. Masharian
1
F.H. Jafarpour
3

  1. Department of Physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
  2. Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
  3. Physics Department, Bu-Ali Sina University, 65174-4161 Hamedan, Iran

This page uses 'cookies'. Learn more