Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to investigate the mechanical properties of beta type aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) quaternary alloy for use as a cardiovascular stent. Titanium (Ti) alloys were fabricated using a vacuum arc remelting furnace process. To homogenize the specimens of each composition and remove the micro segregation, all cast specimens were subjected to homogenization at 850℃ for 4 h, which was 100℃ higher than the β-transus temperature of 750℃. The tensile strength and elongation of the aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) alloys were increased as compared to the homogenized alloys. In addition, many α/β interface boundaries formed after aging treatment at 450°C, which acted as inhibitors of strain and caused an increase in tensile strength. The elongation of Ti-4Mo-4Cr-X alloys consisting of α + β phases after aging treatment was improved by greater than 30%. Results of a potentiodynamic polarization test showed that the lowest current density of Ti-4Mo-4Cr-4Sn with 1.05 × 10–8 A/cm2 was obtained. The present Ti-4Mo-4Cr-X alloys showed better corrosion characteristics as compared to the 316L stainless steel and L605 (Co-Cr alloy) cardiovascular stent alloys.

Go to article

Authors and Affiliations

Kwangmin Lee
ORCID: ORCID
Gunhee Lee
Download PDF Download RIS Download Bibtex

Abstract

In this study, the nominal composition of Cu-2.5Ti alloy was thermally treated to obtain homogenized, aged, and 40% prior cold-rolled+ aged samples. The hardness, wear behavior, and microstructure of samples were investigated. The reciprocating wear tests were performed under four different loads under dry and 3.5%NaCl corrosive environments. The alloy reached its highest hardness value of 8 hours for the aged sample. The hardness value of the sample that was homogenized then cold-rolled by 40% and aged was found higher than the other samples. A decrease in the wear rates in dry conditions was observed in homogenized, aged and cold-rolled and aged samples, respectively. This decrease was more in the corrosive environment. Studies can be advanced by examining the wear behavior at different alloy ratios. The effects of different alloying elements and the ratio of cold-rolled before or after aging can also be investigated for future research.
Go to article

Authors and Affiliations

Ceren Efe
1
ORCID: ORCID
Yavuz Sun
2
ORCID: ORCID
Yunus Türen
2
ORCID: ORCID
Hayrettin Ahlatci
2
ORCID: ORCID

  1. Zonguldak Bülent Ecevit University, Gökçebey M. M. Çanakcı Vocational School of Higher Education, Gökçebey, Zonguldak, Turkey
  2. Karabuk University, Department of Metallurgy and Materials Engineering, Karabuk, Turkey
Download PDF Download RIS Download Bibtex

Abstract

A 20 gram batch weight of NiTi alloy, with a nominal equiatomic composition, was produced by mechanical alloying with milling times of 100, 120, and 140 hours. The differential scanning calorimetry was used to analyze the progress of the crystallization process. The X-ray diffraction examined the crystal structure of the alloy at individual crystallization stages. The observation of the powders microstructure and the chemical composition measurement were carried out using a scanning electron microscope equipped with an energy-dispersive detector. After the milling process, the alloy revealed an amorphous-nanocrystalline state. The course of the crystallization process was multi-stage and proceeded at a lower temperature than the pure amorphous state. The applied production parameters and the stage heat treatment allowed to obtain the alloy showing the reversible martensitic transformation with an enthalpy of almost 5 J/g.
Go to article

Authors and Affiliations

T. Goryczka
1
ORCID: ORCID
G. Dercz
1
ORCID: ORCID

  1. University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1A Str., 41-500 Chorzow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, two different compositions of submicron-structured titanium (760 nm) and micron-structured chromium (4.66 μm) powders were mixed to fabricate Cr-31.2 mass% Ti alloys by vacuum hot-press sintering. The research imposed various hot-press sintering pressures (20, 35 and 50 MPa), while the sintering temperature maintained at 1250°C for 1 h. The experimental results showed that the optimum parameters of the hot-press sintered Cr-31.2 mass% Ti alloys were 1250°C at 50 MPa for 1 h. Also, the relative density reached 99.94%, the closed porosity decreased to 0.04% and the hardness and transverse rupture strength (TRS) values increased to 81.90 HRA and 448.53 MPa, respectively. Moreover, the electrical conductivity is enhanced to 1.58 × 104 S·cm–1. However, the grain growth generated during the high-temperature and high-pressure of the hot-press sintering process resulted in the grain coarsening phenomenon of the Cr-31.2 mass% Ti alloys after 1250°C hot-press sintering at 50 MPa for 1 h. In addition, the Cr-31.2 mass% Ti alloys were fabricated with the submicron-structured titanium (760 nm) and chromium (588 nm) powders showed more effective compaction than the micron-structured titanium (760 nm) and chromium (4.66 μm) powders did. The closed porosity decreases to 0.02% and the hardness values increase to 83.23 HRA. However, the agglomeration phenomenon of the Cr phase and brittleness of the TiCr2 Laves phases easily led to a slight decrease in TRS (400.54 MPa).

Go to article

Authors and Affiliations

Shih-Hsien Chang
Chien-Lun Li
Kuo-Tsung Huang
Tzu-Hsien Yang
Download PDF Download RIS Download Bibtex

Abstract

A nanocrystalline Ti alloy powder was fabricated using cryomilling. The grain size and lattice strain evolution during cryomilling were quantitatively analyzed using X-ray diffraction (XRD) based on the Scherrer equation, Williamson-Hall (W-H) plotting method, and size-strain (S-S) method assuming uniform deformation. Other physical parameters including stress and strain have been calculated. The average crystallite size and the lattice strain evaluated from XRD analysis are in good agreement with the result of transmission electron microscopy (TEM).

Go to article

Authors and Affiliations

I.-J. Park
D.-W. Kim
G.-H. Kim
H.-J. Chae
S.-H. Jung
Download PDF Download RIS Download Bibtex

Abstract

A nanocrystalline Ti alloy powder was fabricated using cryomilling. The grain size and lattice strain evolution during cryomilling were quantitatively analyzed using X-ray diffraction (XRD) based on the Scherrer equation, Williamson-Hall (W-H) plotting method, and size-strain (S-S) method assuming uniform deformation. Other physical parameters including stress and strain have been calculated. The average crystallite size and the lattice strain evaluated from XRD analysis are in good agreement with the result of transmission electron microscopy (TEM).

Go to article

Authors and Affiliations

M. Oh
H.K. Yu
J.-H. Lee
M.C. Oh
S.-H. Jung
B. Ahn
Download PDF Download RIS Download Bibtex

Abstract

Mixture of nickel and titanium powders were milled in planetary mill under argon atmosphere for 100 hours at room temperature. Every 10 hours the structure, morphology and chemical composition was studied by X-ray diffraction method (XRD), scanning electron microscope (SEM) as well as electron transmission microscope (TEM). Analysis revealed that elongation of milling time caused alloying of the elements. After 100 hours of milling the powders was in nanocrystalline and an amorphous state. Also extending of milling time affected the crystal size and microstrains of the alloying elements as well as the newly formed alloy. Crystallization of amorphous alloys proceeds above 600°C. In consequence, the alloy (at room temperature) consisted of mixture of the B2 parent phase and a small amount of the B19’ martensite. Dependently on the milling time and followed crystallization the NiTi alloy can be received in a form of the powder with average crystallite size from 1,5 up to 4 nm.

Go to article

Authors and Affiliations

P. Salwa
T. Goryczka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a study was carried out to investigate the surface roughness and material removal rate of low carbon NiTi shape memory alloy (SMA) machined by Wire Electro Spark Erosion (WESE) technique. Experiments are designed considering three parameters viz, spark ON time (SON), spark OFF time (SOFF), and voltage (V) at three levels each. The surface roughness increased from 2.1686 μm to 2.6869 μm with an increase in both SON time, SOFF time and a decrease in voltage. The material removal rate increased from 1.272 mm3/min to 1.616 mm3/min with an increase in SON time but a varying effect was observed the SOFF time and voltage were varied. The analysis revealed that the intensity and duration of the spark had an unswerving relation with the concentration of the microcracks and micropores. More microcracks and micropores were seen in the combination of SON = 120 µs, voltage = 30 V. The concentration of the microcracks and micropores could be minimised by using an appropriate parameter setting. Therefore, considering the surface analysis and material removal, the low carbon NiTi alloy is recommended to machine with 110 μs – 55 μs – 30 v (SON – SOFF – V respectively), to achieve better surface roughness with minimal surface damage.
Go to article

Authors and Affiliations

Ebenezer George
1
ORCID: ORCID
Adam Khan M.
1
ORCID: ORCID
Chellaganesh Duraipandi
1
Winowlin Jappes J.T.
1
Julfikar Haider
2

  1. School of Automotive and Mechanical Engineering and Centre for Surface Engineering, Kalasalingam Academy of Research and Education, Tamil Nadu, India
  2. Manchester Metropolitan University, Advanced Materials and Surface Engineering (AMSE) Research Centre, Chester Street, M1 5GD, UK

This page uses 'cookies'. Learn more