Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Fe-40wt% TiB2 nanocomposites were fabricated by mechanical activation and spark-plasma sintering of a powder mixture of iron boride (FeB) and titanium hydride (TiH2). The powder mixture of (FeB, TiH2) was prepared by high-energy ball milling in a planetary ball mill at 700 rpm for 3 h followed by spark-plasma sintering (SPS) at various conditions. Analysis of the change in relative sintered density and densification rate during sintering showed that a self-propagating high-temperature synthesis reaction occurs to form TiB2 from FeB and Ti. A sintered body with relative density higher than 98% was obtained after sintering at 1150°C for 5 and 15 min. The microstructural observation of sintered compacts with the use of FE-SEM and TEM revealed that ultrafine particulates with approximately 5 nm were evenly distributed in an Fe-matrix. A hardness value of 83 HRC was obtained, which is equivalent to that of conventional WC-20 Co systems.
Go to article

Authors and Affiliations

B.-W. Kim
X.-K. Huynh
J.-S. Kim
Download PDF Download RIS Download Bibtex

Abstract

To investigate the impact of various Al-Ti-B grain-refiners on solidification and grain-refining performance, a wrought aluminium alloy AA6182 was used. Three different grain-refiners from different manufacturers were used to establish the efficiency, i.e. contact time before casting, on the primary solidification and grain formation size. The primary solidification of α-Al grains at inoculation was observed by using thermal analysis (TA). Differential scanning calorimetry (DSC) was used in order to analyze the quality of various grain-refiners. The size of the primary grains was analyzed using optical microscopy (OM). Scanning electron microscopy (SEM) was used to estimate the size and distribution of Al3Ti and TiB2 particles in various grain-refiners and to establish the best efficiency of the investigated grain-refiners.

Within 1-4 min of inoculation the smallest fine equiaxed grains were achieved when either one of the investigated grain-refiners was added. It was established, that grain-refiner A contains higher content of impurities which do not melt in the experimental temperature range made by DSC method. The most pure grain-refiner turned out to be grain-refiner B, in which the most optimal number of TiB2 particles and particle size distribution was found.

Go to article

Authors and Affiliations

M. Vončina
J. Medved
L. Jerina
I. Paulin
P. Cvahte
M. Steinacher
Download PDF Download RIS Download Bibtex

Abstract

An attempt has been made to synthesize the aluminium based ex-situ (Al-SiC) and in-situ (Al-TiB2) formed metal matrix composites with varying weight percentage of reinforcement contents such as 4wt.%, 6wt.% and 8wt.%. Synthesized composites were subjected to a cold extrusion process followed by heat treatment according to the ASTM B 918-01 standards. The mechanical properties of in-situ composites were evaluated as per the ASTM guidelines and compared with ex-situ formed composites and base metal properties. Superior properties were noticed in the in-situ formed composites and the mechanical properties such as yield strength, Ultimate tensile strength (UTS) and Hardness for both ex-situ and in-situ composites were found to increase with increasing the reinforcement addition. Cold extruded Al-8 wt.% SiC composite properties such as hardness, yield strength and UTS are 87 RB, 152 MPa, 216 MPa respectively. Whereas, for Al-8 wt.% TiB2 composite, the corresponding properties are 94 RB, 192 MPa, 293 MPa. The morphology of the composites is analysed by Optical and Scanning Electron Microscopic (SEM) whereas presence of reinforcement particles such SiC and TiB2 along with intermetallic phases Mg2Si and Al5FeSi are confirmed by EDX, XRD and Element Mapping analyses.
Go to article

Authors and Affiliations

B. Gobalakrishnan
1
C. Rajaravi
2
Gobikrishnan Udhayakumar
3
P.R. Lakshminarayanan
4

  1. CARE College of Engineering, Department of Mechanical Engineering, Trichy-620 009, Tamil Nadu, India
  2. Hindusthan College of Engineering and Technology, Coimbatore – 641 032, Tamilnadu, India
  3. Sona College of Technology, Department of Mechanical Engineering, Salem – 636 005, Tamil Nadu, India
  4. Annamalai University, Department of Manufacturing Engineering, Annamalai Nagar-608 002, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

2 wt.% TiB2 (mean particle size: 400 nm) reinforced Al 7075 metal matrix composites (MMCs) fabricated through mechanical stirring and ultrasonic agitation integrated squeeze casting process were subjected to electrical discharge machining (EDM) after determining the physical and mechanical properties. EDM was conducted with Cu electrode tools to investigate influence of machining factors, i.e. peak current (IP), pulse on time (TON) and gap voltage (VG) on the tool wear rate (TWR), material removal rate (MRR) and average surface roughness (ASR) of the machined surfaces. All the three responses increased on increasing IP and TON, but reduced on increasing VG. The machined surfaces were studied through scanning electron microscope (SEM). Significance of the EDM parameters on the individual responses were studied using analysis of variance (ANOVA) and regression models for the responses were developed using response surface method (RSM). The responses under consideration were optimized simultaneously using Taguchi embedded weighted principal component analysis (WPCA), which resulted the parametric combination of 4A (current), 100 μs (pulse duration) and 75V (voltage) was the optimal setting for the multi-criteria decision problem. Finally, the result of optimization was validated by conducting some confirmatory experiments.
Go to article

Authors and Affiliations

Rahul Chandra Pradhan
1
ORCID: ORCID
Diptikanta Das
1
ORCID: ORCID
Barada Prasanna Sahoo
1
ORCID: ORCID
Chiranjeeb Rout
1
ORCID: ORCID
Akash Panda
1
ORCID: ORCID
Evangelin Barla
1
ORCID: ORCID

  1. KIIT Deemed to be University, School of Mechanical Engineering, Bhubaneswar-751024, India
Download PDF Download RIS Download Bibtex

Abstract

In this study, Fe-40wt% TiB2 nanocomposite powders were fabricated by two different methods: (1) conventional powder metallurgical process by simple high-energy ball-milling of Fe and TiB2 elemental powders (ex-situ method) and (2) high-energy ball-milling of the powder mixture of (FeB+TiH2) followed by reaction synthesis at high temperature (in-situ method). The ex-situ powder was prepared by planetary ball-milling at 700 rpm for 2 h under an Ar-gas atmosphere. The in-situ powder was prepared under the same milling condition and heat-treated at 900oC for 2 h under flowing argon gas in a tube furnace to form TiB2 particulates through a reaction between FeB and Ti. Both Fe-TiB2 composite powder compacts were sintered by a spark-plasma sintering (SPS) process. Sintering was performed at 1150℃ for the ex-situ powder compact and at 1080℃ for the in-situ powder for 10 minutes under 50 MPa of sintering pressure and 0.1 Pa vacuum for both processes. The heating rate was 50o/min to reach the sintering temperature. Results from analysis of shrinkage and microstructural observation showed that the in-situ composite powder compacts had a homogeneous and fine microstructure compared to the ex-situ preparation, even though the sintered densities were almost the same (99.6 and 99.8% relative density, respectively).

Go to article

Authors and Affiliations

Sun-Woo Bae
Xuan-Khoa Huynh
Ji-Soon Kim

This page uses 'cookies'. Learn more