Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The vibration and stability analysis of uniform beams supported on two-parameter elastic foundation are performed. The second foundation parameter is a function of the total rotation of the beam. The effects of axial force, foundation stiffness parameters, transverse shear deformation and rotatory inertia are incorporated into the accurate vibration analysis. The work shows very important question of relationships between the parameters describing the beam vibration, the compressive force and the foundation parameters. For the free supported beam, the exact formulas for the natural vibration frequencies, the critical forces and the formula defining the relationship between the vibration frequency and the compressive forces are derived. For other conditions of the beam support conditional equations were received. These equations determine the dependence of the frequency of vibration of the compressive force for the assumed parameters of elastic foundation and the slenderness of the beam.

Go to article

Authors and Affiliations

P. Obara
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a comprehensive study is carried out on the dynamic behaviour of Euler–Bernoulli and Timoshenko beams resting on Winkler type variable elastic foundation. The material properties of the beam and the stiffness of the foundation are considered to be varying along the length direction. The free vibration problem is formulated using Rayleigh-Ritz method and Hamilton’s principle is applied to generate the governing equations. The results are presented as non-dimensional natural frequencies for different material gradation models and different foundation stiffness variation models. Two distinct boundary conditions viz., clamped-clamped and simply supported-simply supported are considered in the analysis. The results are validated with existing literature and excellent agreement is observed between the results.

Go to article

Bibliography


[1] J. Neuringer and I. Elishakoff. Natural frequency of an inhomogeneous rod may be independent of nodal parameters. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 456(2003):2731–2740, 2000. doi: 10.1098/rspa.2000.0636.
[2] I. Elishakoff and S. Candan. Apparently first closed-form solution for vibrating: inhomogeneous beams. International Journal of Solids and Structures, 38(19):3411–3441, 2001. doi: 10.1016/S0020-7683(00)00266-3.
[3] Y. Huang and X.F. Li. A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. Journal of Sound and Vibration, 329(11):2291–2303, 2010. doi: 10.1016/j.jsv.2009.12.029.
[4] M. Şimşek, T. Kocatürk, and Ş.D. Akbaş.. Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Composite Structures, 94(8):2358–2364, 2012. doi: 10.1016/j.compstruct.2012.03.020.
[5] B. Akgöz and Ö. Civalek. Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Composite Structures, 98:314-322, 2013. doi: 10.1016/j.compstruct.2012.11.020.
[6] K. Sarkar and R. Ganguli. Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed–fixed boundary condition. Composites Part B: Engineering, 58:361–370, 2014. doi: 10.1016/j.compositesb.2013.10.077.
[7] M. Rezaiee-Pajand and S.M. Hozhabrossadati. Analytical and numerical method for free vibration of double-axially functionally graded beams. Composite Structures, 152:488–498, 2016. doi: 10.1016/j.compstruct.2016.05.003.
[8] M. Javid and M. Hemmatnezhad. Finite element formulation for the large-amplitude vibrations of FG beams. Archive of Mechanical Engineering, 61(3):469–482, 2014. doi: 10.2478/meceng-2014-0027.
[9] W.R. Chen, C.S. Chen and H. Chang. Thermal buckling of temperature-dependent functionally graded Timoshenko beams. Archive of Mechanical Engineering, 66(4): 393–415, 2019. doi: 10.24425/ame.2019.131354.
[10] W.Q. Chen, C.F. Lü, and Z.G. Bian. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10):877–890, 2004. doi: 10.1016/j.apm.2004.04.001.
[11] J. Ying, C.F. Lü, and W.Q. Chen. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Composite Structures, 84(3):209–219, 2008. doi: 10.1016/j.compstruct.2007.07.004.
[12] T. Yan, S. Kitipornchai, J. Yang, and X.Q. He. Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Composite Structures, 93(11):2992–3001, 2011. doi: 10.1016/j.compstruct.2011.05.003.
[13] A. Fallah and M.M. Aghdam. Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. European Journal of Mechanics – A/Solids, 30(4):571–583, 2011. doi: 10.1016/j.euromechsol.2011.01.005.
[14] A. Fallah and M.M. Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43(3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.
[15] H. Yaghoobi and M. Torabi. An analytical approach to large amplitude vibration and post-buckling of functionally graded beams rest on non-linear elastic foundation. Journal of Theoretical and Applied Mechanics, 51(1):39–52, 2013.
[16] A.S. Kanani, H. Niknam, A.R. Ohadi, and M.M. Aghdam. Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Composite Structures, 115:60–68, 2014. doi: 10.1016/j.compstruct.2014.04.003.
[17] N. Wattanasakulpong and Q. Mao. Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Composite Structures, 119:346–354, 2015. doi: 10.1016/j.compstruct.2014.09.004.
[18] F.F. Calim. Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Composites Part B: Engineering, 103:98–112, 2016. doi: 10.1016/j.compositesb.2016.08.008.
[19] H. Deng, K. Chen, W. Cheng, and S. Zhao. Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation. Composite Structures, 160:152–168, 2017. doi: 10.1016/j.compstruct.2016.10.027.
[20] H. Lohar, A. Mitra, and S. Sahoo. Nonlinear response of axially functionally graded Timoshenko beams on elastic foundation under harmonic excitation. Curved and Layered Structures, 6(1):90–104, 2019. doi: 10.1515/cls-2019-0008.
[21] B. Karami and M. Janghorban. A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams. Thin-Walled Structures, 143:106227, 2019. doi: 10.1016/j.tws.2019.106227.
[22] I. Esen. Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. International Journal of Mechanical Sciences, 153–154:21–35, 2019. doi: 10.1016/j.ijmecsci.2019.01.033.
[23] L.A. Chaabane, F. Bourada, M. Sekkal, S. Zerouati, F.Z. Zaoui, A. Tounsi, A. Derras, A.A. Bousahla, and A. Tounsi. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics, 71(2):185–196, 2019. doi: 10.12989/sem.2019.71.2.185.
[24] M. Eisenberger and J. Clastornik. Vibrations and buckling of a beam on a variable Winkler elastic foundation. Journal of Sound and Vibration, 115(2):233–241, 1987. doi: 10.1016/0022-460X(87)90469-X.
[25] A. Kacar, H.T. Tan, and M.O. Kaya. Free vibration analysis of beams on variable Winkler elastic foundation by using the differential transform method. Mathematical and Computational Applications, 16(3):773–783, 2011. doi: 10.3390/mca16030773.
[26] A. Mirzabeigy and R. Madoliat. Large amplitude free vibration of axially loaded beams resting on variable elastic foundation. Alexandria Engineering Journal, 55(2):1107–1114, 2016. doi: 10.1016/j.aej.2016.03.021.
[27] H. Zhang, C.M. Wang, E. Ruocco, and N. Challamel. Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Engineering Structures, 126:252–263, 2016. doi: 10.1016/j.engstruct.2016.07.062.
[28] M.H. Yas, S. Kamarian, and A. Pourasghar. Free vibration analysis of functionally graded beams resting on variable elastic foundations using a generalized power-law distribution and GDQ method. Annals of Solid and Structural Mechanics, 9(1-2):1–11, 2017. doi: 10.1007/s12356-017-0046-9.
[29] S.K. Jena, S. Chakraverty, and F. Tornabene. Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express, 6(8):085051, 2019. doi: 10.1088/2053-1591/ab1f47.
[30] S. Kumar, A. Mitra, and H. Roy. Geometrically nonlinear free vibration analysis of axially functionally graded taper beams. Engineering Science and Technology, an International Journal, 18(4):579–593, 2015. doi: 10.1016/j.jestch.2015.04.003.
Go to article

Authors and Affiliations

Saurabh Kumar
1

  1. Department of Mechanical Engineering, School of Engineering, University of Petroleum andEnergy Studies (UPES), Dehradun, 248007, India.
Download PDF Download RIS Download Bibtex

Abstract

Complex structures used in various engineering applications are made up of simple structural members like beams, plates and shells. The fundamental frequency is absolutely essential in determining the response of these structural elements subjected to the dynamic loads. However, for short beams, one has to consider the effect of shear deformation and rotary inertia in order to evaluate their fundamental linear frequencies. In this paper, the authors developed a Coupled Displacement Field method where the number of undetermined coefficients 2n existing in the classical Rayleigh-Ritz method are reduced to n, which significantly simplifies the procedure to obtain the analytical solution. This is accomplished by using a coupling equation derived from the static equilibrium of the shear flexible structural element. In this paper, the free vibration behaviour in terms of slenderness ratio and foundation parameters have been derived for the most practically used shear flexible uniform Timoshenko Hinged-Hinged, Clamped-Clamped beams resting on Pasternak foundation. The findings obtained by the present Coupled Displacement Field Method are compared with the existing literature wherever possible and the agreement is good.

Go to article

Bibliography

[1] C.F. Lü, C.W. Lim, and W.A. Yao. A new analytic symplectic elasticity approach for beams resting on Pasternak elastic foundations. Journal of Mechanics of Materials and Structures, 4(10):1741–1754, 2010. doi: 10.2140/jomms.2009.4.1741.
[2] C. Franciosi and A. Masi. Free vibrations of foundation beams on two-parameter elastic soil. Computers & Structures, 47(3):419–426, 1993. doi: 10.1016/0045-7949(93)90237-8.
[3] I. Caliò and A. Greco. Free vibrations of Timoshenko beam-columns on Pasternak foundations. Journal of Vibration and Control, 19(5):686–696, 2013. doi: 10.1177/1077546311433609.
[4] S. Lee, J.K. Kyu Jeong and J. Lee. Natural frequencies for flexural and torsional vibrations of beams on Pasternak foundation. Soils and Foundations, 54(6):1202–1211, 2014. doi: 10.1016/j.sandf.2014.11.013.
[5] M.A. De Rosa. Free vibrations of Timoshenko beams on two-parameter elastic foundation. Computers & Structures, 57(1):151–156, 1995. doi: 10.1016/0045-7949(94)00594-S.
[6] M.A. De Rosa and M.J. Maurizi. The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams—exact solution. Journal of Sound and Vibration, 212(4):573–581, 1998. doi: 10.1006/jsvi.1997.1424.
[7] M. Karkon and H. Karkon. New element formulation for free vibration analysis of Timoshenko beam on Pasternak elastic foundation. Asian Journal of Civil Engineering (BHRC), 17(4):427–442, 2016.
[8] K. Meera Saheb et al. Free vibration analysis of Timoshenko beams using Coupled Displacement Field Method. Journal of Structural Engineering, 34:233–236, 2007.
[9] M.T. Hassan and M. Nassar. Analysis of stressed Timoshenko beams on two parameter foundations. KSCE Journal of Civil Engineering, 19(1):173–179, 2015. doi: 10.1007/s12205-014-0278-8.
[10] N.D. Kien. Free vibration of prestress Timoshenko beams resting on elastic foundation. Vietnam Journal of Mechanics, 29(1):1–12, 2007. doi: 10.15625/0866-7136/29/1/5586.
[11] P. Obara. Vibrations and stability of Bernoulli-Euler and Timoshenko beams on two-parameter elastic foundation. Archives of Civil Engineering, 60(4):421–440, 2014. doi: 10.2478/ace-2014-0029.
[12] S.Y. Lee, Y.H. Kuo, and F.Y. Lin. Stability of a Timoshenko beam resting on a Winkler elastic foundation. Journal of Sound and Vibration, 153(2):193–202, 1992. doi: 10.1016/S0022-460X(05)80001-X.
[13] T.M. Wang and J.E. Stephens. Natural frequencies of Timoshenko beams on Pasternak foundations. Journal of Sound and Vibration, 51(2):149–155, 1977. doi: 10.1016/S0022-460X(77)80029-1.
[14] T.M. Wang and L.W. Gagnon. Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations. Journal of Sound and Vibration, 59(2):211–220, 1978. doi: 10.1016/0022-460X(78)90501-1.
[15] T. Yokoyama. Vibration analysis of Timoshenko beam-columns on two-parameter elastic foundations. Computers & Structures, 61(6):995–1007, 1996. doi: 10.1016/0045-7949(96)00107-1.
[16] T. Yokoyama. Parametric instability of Timoshenko beams resting on an elastic foundation. Computers & Structures, 28(2):207–216, 1988. doi: 10.1016/0045-7949(88)90041-7.
[17] W.Q. Chen, C.F. Lü, and Z.G. Bian. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10):877–890, 2004. doi: 10.1016/j.apm.2004.04.001.
Go to article

Authors and Affiliations

Korabathina Rajesh
1
Koppanati Meera Saheb
1

  1. Jawaharlal Nehru Technological University Kakinada, Andhra Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

In this work, transient and free vibration analyses are illustrated for a functionally graded Timoshenko beam (FGM) using finite element method. The governing equilibrium equations and boundary conditions (B-Cs) are derived according to the principle of Hamilton. The materials constituents of the FG beam that vary smoothly along the thickness of the beam (along beam thickness) are evaluated using the rule of mixture method. Power law index, slenderness ratio, modulus of elasticity ratio, and boundary conditions effect of the cantilever and simply supported beams on the dynamic response of the beam are studied. Moreover, the influence of mass distribution and continuous stiffness of the FGM beam are deeply investigated. Comparisons between the current free vibration results (fundamental frequency) and other available studies are performed to check the formulation of the current mathematical model. Good results have been obtained. A significant effect is noticed in the transient response of both simply supported and cantilever beams at the smaller values of the power index and the modulus elasticity ratio.

Go to article

Bibliography

[1] B.V. Sankar. An elasticity solution for functionally graded beams. Composites Science and Technology,61(5):689–96, 2001. doi: 10.1016/S0266-3538(01)00007-0.
[2] M. Şimşek. . Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. International Journal of Engineering and Applied Sciences, 1(3):1–11, 2009.
[3] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials & Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
[4] A. Chakrabarty, S. Gopalakrishnan, and J.N. Reddy. A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences, 45(3):519–539, 2003. doi: 10.1016/S0020-7403(03)00058-4.
[5] M. Al-Shujairi and Ç. Mollamahmutoğlu. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect. Composite Structures, 201:1018–1030, 2018. doi: 10.1016/j.compstruct.2018.06.035.
[6] H.T. Thai and T.P. Vo. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. International Journal of Mechanical Sciences, 62(1):57–66, 2012. doi: 10.1016/j.ijmecsci.2012.05.014.
[7] M. Al-Shujairi and Ç. Mollamahmutoğlu. Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect. Composites Part B: Engineering, 154:292–312, 2018. doi: 10.1016/j.compositesb.2018.08.103.
[8] M. Şimşek and M. Al Shujairi. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engineering,108:18–34, 2017. doi: 10.1016/j.compositesb.2016.09.098.
[9] M. Aydogdu and V. Taskin. Free vibration analysis of functionally graded beams with simply supported edges. Materials & Design, 28(5):1651–1656, 2007. doi: 10.1016/j.matdes.2006.02.007.
[10] M. Şimşek and T. Kocatürk. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures, 90(4):465–473, 2009. doi: 10.1016/j.compstruct.2009.04.024.
[11] K.K. Pradhan and S. Chakrabaty. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Composites Part B: Engineering, 51:175–184, 2013. doi: 10.1016/j.compositesb.2013.02.027.
[12] Y. Yang, C.C. Lam, K.P. Kou, and V.P. Iu. Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method. Composite Structures, 117:32–39, 2014. doi: 10.1016/j.compstruct.2014.06.016.
[13] L.L. Ke, J. Yang, S. Kitipornchai, and Y. Xiang. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures, 16(6):488–502, 2009. doi: 10.1080/15376490902781175.
[14] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4):697–705, 2010. doi: 10.1016/j.nucengdes.2009.12.013.
[15] M. Şimşek. Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Composite Structures, 133:968–78, 2015. doi: 10.1016/j.compstruct.2015.08.021.
[16] J. Yang, Y. Chen, Y. Xiang, and X.L. Jia. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, 312(1–2):166–181, 2008. doi: 10.1016/j.jsv.2007.10.034.
[17] S. Kapuria, M. Bhattacharyya, and A.N. Kumar. Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Composite Structures, 82(3):390–402, 2008. doi: 10.1016/j.compstruct.2007.01.019.
[18] J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures, 83(1):48–60, 2008. doi: 10.1016/j.compstruct.2007.03.006.
[19] A. Doroushi, M.R. Eslami, and A. Komeili. Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory. Journal of Intelligent Material Systems and Structures, 22(3):231–243, 2011. doi: 10.1177/1045389X11398162.
[20] M.J. Aubad, S.O.W. Khafaji, M.T. Hussein, and M.A. Al-Shujairi. Modal analysis and transient response of axially functionally graded (AFG) beam using finite element method. Materials Research Express, 6(10):1065g4, 2019. doi: 10.1088/2053-1591/ab4234.
[21] Z. Su, G. Jin, and T. Ye. Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions. Smart Materials and Structures, 25(6):065003, 2016. doi: 10.1088/0964-1726/25/6/065003.
[22] A. Daga, N. Ganesan, and K. Shankar. Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements. International Journal for Computational Methods in Engineering Science and Mechanics, 10(3):173–185, 2009. doi: 10.1080/15502280902797207.
[23] Z.N. Li, Y.X. Hao, W. Zhang, and J.H. Zhang. Nonlinear transient response of functionally graded material sandwich doubly curved shallow shell using new displacement field. Acta Mechanica Solida Sinica, 31(1):108–126, 2018. doi: 10.1007/s10338-018-0008-8.
[24] Y. Huang and Y. Huang. A real-time transient analysis of a functionally graded material plate using reduced-basis methods. Advances in Linear Algebra & Matrix Theory, 5(3):98–108, 2015. doi: 10.4236/alamt.2015.53010.
[25] T. Yokoyama. Vibrations and transient response of Timoshenko beams resting on elastic foundation. Ingenieur Archiv, 57:81–90, 1987. doi: 10.1007/BF00541382.
[26] A.E. Alshorbagy, M.A. Eltaher, and F.F. Mahmoud. Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1):412–425, 2011. doi: 10.1016/j.apm.2010.07.006.
[27] S. Taeprasartsit. Nonlinear free vibration of thin functionally graded beams using the finite element method. Journal of Vibration and Control, 21(1):29–46, 2015. doi: 10.1177/1077546313484506.
[28] N. Pradhan and S.K. Sarangi. Free vibration analysis of functionally graded beams by finite element method. IOP Conference Series: Materials Science and Engineering, 377:012211, 2018. doi: 10.1088/1757-899X/377/1/012211.
[29] N. Fouda, T. El-Midany, and A.M. Sadoun. Bending, buckling and vibration of a functionally graded porous beam using finite elements. Journal of Applied and Computational Mechanics, 3(4):274–282, 2017. doi: 10.22055/jacm.2017.21924.1121.
[30] L.L. Jing, P.J. Ming, W.P. Zhang, L.R. Fu, and Y.P. Cao. Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method. Composite Structures, 138:192–213, 2016. doi: 10.1016/j.compstruct.2015.11.027.
[31] V. Kahya and M. Turan. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 109:108–115, 2017. doi: 10.1016/j.compositesb.2016.10.039.
[32] H. Su, J.R. Banerjee, and C.W. Cheung. Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Composite Structures, 106:854–862, 2013. doi: 10.1016/j.compstruct.2013.06.029.
[33] Z. Friedman and J.B. Kosmatka. An improved two-node Timoshenko beam finite element. Computers & Structures, 47(3):473–481, 1993. doi: 10.1016/0045-7949(93)90243-7.
[34] Y.H. Lin. Vibration analysis of Timoshenko beams traversed by moving loads. Journal of Marine Science and Technology. 2(1):25–35, 1994.
Go to article

Authors and Affiliations

Salwan Obaid Waheed Khafaji
1
Mohammed A. Al-Shujairi
1
Mohammed Jawad Aubad
1

  1. Department of Mechanical Engineering, Faculty of Engineering, University of Babylon, BabylonProvince, Iraq.
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a modified finite element method for nonlinear analysis of 2D beam structures. To take into account the influence of the shear flexibility, a Timoshenko beam element was adopted. The algorithm proposed enables using complex material laws without the need of implementing advanced constitutive models in finite element routines. The method is easy to implement in commonly available CAE software for linear analysis of beam structures. It allows to extend the functionality of these programs with material nonlinearities. By using the structure deformations, computed from the nodal displacements, and the presented here generalized nonlinear constitutive law, it is possible to iteratively reduce the bending, tensile and shear stiffnesses of the structures. By applying a beam model with a multi layered cross-section and generalized stresses and strains to obtain a representative constitutive law, it is easy to model not only the complex multi-material cross-sections, but also the advanced nonlinear constitutive laws (e.g. material softening in tension). The proposed method was implemented in the MATLAB environment, its performance was shown on the several numerical examples. The cross-sections such us a steel I-beam and a steel I-beam with a concrete encasement for different slenderness ratios were considered here. To verify the accuracy of the computations, all results are compared with the ones received from a commercial CAE software. The comparison reveals a good correlation between the reference model and the method proposed.
Go to article

Bibliography


[1] Abaqus Documentation Collection, Abaqus Analysis User's Manual, Abaqus/CAE User's Manual, 2020.
[2] A. M. Barszcz, “Direct design and assessment of the limit states of steel planar frames using CSD advanced analysis”, Archives of Civil Engineering, 64(4), pp. 203–241, 2018. https://doi.org/10.2478/ace-2018-0071
[3] S. El-Tawil, C. F. Sanz-Picon, G. G. Deierlein, „Evaluation of ACI 318 and AISC (LRFD) strength provisions for composite beam-columns”, Journal of Constructional Steel Research, 34(1): pp 103–123, 1995.
[4] K. A. Farhan, M. A. Shallal, „Experimental behaviour of concrete-filled steel tube composite beams”, Archives of Civil Engineering, 66(2), pp. 235–252, 2020. https://doi.org/10.24425/ace.2020.131807
[5] T. Gajewski, T. Garbowski, „Calibration of concrete parameters based on digital image correlation and inverse analysis”, Archives of Civil and Mechanical Engineering, 14, pp. 170–180, 2014. https://doi.org/10.1016/J.ACME.2013.05.012
[6] T. Gajewski, T. Garbowski, „Mixed experimental/numerical methods applied for concrete parameters estimation”, Recent Advances in Computational Mechanics: proceedings of the 20th International Conference on Computer Methods in Mechanics (CMM 2013), Poznan, August, 2013, Editors: T. Łodygowski, J. Rakowski, P. Litewka, CRC Press/Balkema, pp. 293–302, 2014. https://doi.org/10.1201/B16513
[7] T. Garbowski, G. Maier, G. Novati, “Diagnosis of concrete dams by flat-jack tests and inverse analyses based on proper orthogonal decomposition”, Journal of Mechanics of Materials and Structures, 6 (1–4), pp. 181–202, 2011. https://doi.org/10.2140/JOMMS.2011.6.181
[8] B. Grzeszykowski, E. Szmigiera, „Nonlinear longitudinal shear distribution in steel-concrete composite beams”, Archives of Civil Engineering, 65(1), pp. 65–82, 2019. https://doi.org/10.2478/ace-2019-0005
[9] T. Jankowiak, T. Łodygowski, „Identification of parameters of concrete damage plasticity constitutive model”, Foundations of Civil and Environmental Engineering, No. 6, pp. 53–69, 2005.
[10] V. Jayanthi, C. Umarani, „Performance evaluation of different types of shear connectors in steel-concrete composite construction”, Archives of Civil Engineering, 64(2), pp. 97–110, 2018. https://doi.org/10.2478/ace-2018-0019
[11] T. Łodygowski, „Geometrycznie nieliniowa analiza sztywno-plastycznych i sprężysto-plastycznych belek i ram płaskich”, Warsaw, 1982.
[12] T. Łodygowski, M. Szumigała, „Engineering models for numerical analysis of composite bending members”, Mechanics of Structures and Machines, 20, pp. 363–380, 1992.
[13] S. A. Mahin, V. V. Bertero, RCCOLA, „a Computer Program for Reinforced Concrete Column Analysis: User's Manual and Documentation”, Department of Civil Engineering, University of California, 1977.
[14] S. A. Mirza, B. W. Skrabek, „Reliability of short composite beam-column strength interaction”, Journal of Structural Engineering, 117(8): pp 2320–2339, 1991.
[15] PN-EN 1992-1-1:2008 - Eurocode 2: Design of concrete structures - Part 1-1: General rules, and rules for buildings, 2008.
[16] G. Rakowski, Z. Kasprzyk, „Metoda Elementów Skończonych w mechanice konstrukcji”, OWPW, Poland, 2016.
[17] C. N. Reid, „Deformation geometry for materials scientists”, Pergamon, 1973.
[18] J. Rotter, P. Ansourian, „Cross-section behaviour and ductility in composite beams”, 1978.
[19] J. Siwiński, A. Stolarski, „Homogeneous substitute material model for reinforced concrete modeling”, Archives of Civil Engineering, 64(1), pp. 87–99, 2018. https://doi.org/10.2478/ace-2018-0006
[20] P. Szeptyński, „Teoria sprężystości”, Cracow, 2018.
[21] M. Szumigała, „Zespolone stalowo-betonowe konstrukcje szkieletowe pod obciążeniem doraźnym”, Wydawnictwo Politechniki Poznańskiej, Poland, 2007.
[22] A. Zirpoli, G. Maier, G. Novati, T. Garbowski, „Dilatometric tests combined with computer simulations and parameter identification for in-depth diagnostic analysis of concrete dams”, Life-Cycle Civil Engineering: proceedings of the 1st International Symposium on Life-Cycle Civil Engineering (IALCCE '08), Varenna, Lake Como, June, 2008, Editors: F. Biondini, D. M. Frangopol, CRC Press, 1, pp. 259–264, 2008. https://doi.org/10.1201/9780203885307
Go to article

Authors and Affiliations

Damian Mrówczyński
1
ORCID: ORCID
Tomasz Gajewski
2
ORCID: ORCID
Tomasz Garbowski
3
ORCID: ORCID

  1. Research and Development Division, FEMAT Sp. z o.o., Romana Maya 1, 61-371, Poznan, Poland
  2. Poznan University of Technology, Institute of Structural Analysis, Piotrowo 5, 60-965 Poznan, Poland
  3. Poznan University of Life Sciences, Department of Biosystems Engineering, Wojska Polskiego 50, 60-627 Poznan, Poland

This page uses 'cookies'. Learn more