Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The authors present a numerical study of a start-up of a boiler with a thick-walled element subjected to thermomechanical loading. The significance of calculations of real heat transfer coefficients has been demonstrated. Fluid dynamics, mechanical transient thermal and static structural calculations have been conducted in both separate and coupled modes. Strain-stress analyses prove that the effect of the heat transfer coefficient changing in time and place in comparison with a constant one as recommended by standards is the key factor of fatigue calculations.

Go to article

Authors and Affiliations

Krzysztof Wacławiak
Jerzy Okrajni
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an indirect method for the identification of the final shape of the freshly executed jet-grouted column is developed. The method relies on the backward analysis of the temperatures measured inside the column, along the trace of the injecting pipe. Temperature changes in the column are caused by the hydration process of the cementitious grout. 2D axisymmetric unsteady heat conduction initial-boundary value problem is solved for finding the column shape which fits best the reference temperature measurements. The model of the column is solved using the finite element method. The search is performed using the global evolutionary optimization algorithm called differential evolution. It is shown that the proposed method can provide an accurate prediction of the column shape if only the model reflects the physical reality well. The advantage over previous results is that the cylindrical shape of the column does not have to be assumed anymore, and the full profile of the column along its length can be accurately identified.
Go to article

Authors and Affiliations

Marek Wojciechowski
1
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Al. Politechniki 6, 90-924 Łódz, Poland

This page uses 'cookies'. Learn more