Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Bibliography

Anderson, F.M. 1902. Cretaceous Deposits of the Pacific Coast. Proceedings of the California Academy of Sciences (3), Geology, 2, 1–154.
Atabekian, A.A. and Akopyan, V.T. 1972. Late Cretaceous ammonites of the Armenian SSR (Collignoniceratinae, Peroniceratinae). Izvestiya Akademia Nauk Armyanskoj SSR, 2, 3–12. [In Russian]
Barroso-Barcenilla, F. and Goy, A. 2009. The ammonite genera Fagesia and Neoptychites (family Vascoceratidae) in the Iberian Trough, Spain. Géobios, 42, 17–42.
Basse, E. 1947. Les peuplements Malgaches de Barroisiceras (Révision du genre Barroisiceras De Gross). Paléontologie de Madagascar 26. Annales de Paléontologie, 22, 97–178 (1–81).
Basse, E. 1948. Quelques Ammonites nouvelles du Crétacé de Colombie (Am. Sud). Bulletin de la Société Géologique de France, (5) 18, 691–698.
Basse, E. 1951. Quelques mollusques du Crétacé de Colombie. Bulletin de la Société Géologique de France (5), 20 [for 1950], 245–255.
Basse, E. 1952. Ammonoidea s. str. In: Piveteau, J. (Ed.), Traité de Paléontologie, Tome 2, 581–688. Masson et cie; Paris.
Benavides-Cáceres, V.E. 1956. Cretaceous system in northern Peru. Bulletin of the American Museum of Natural History, 108, 353–494.
Besairie, H. 1936. Recherches géologiques à Madagascar. Première Suit, la géologie du Nord-Ouest. Mémoires de l’Académie Malgache, 21, 1–259.
Billinghurst, S.A. 1927. On some new Ammonoidea from the Chalk Rock. Geological Magazine, 64, 511–518.
Boule, M., Lemoine, P. and Thévenin, A. 1906–1907. Paléontologie de Madagascar III Céphalopodes crétacés des environs de Diego-Suarez. Annales de Paléontologie, 1 (1906), 173–192 (1–20); 2 (1907), 1–56 (21–76).
Brüggen, H. 1910. Die Fauna des unteren Senon von Nord- Perú. In: Steinmann, G. Beiträge zur Geologie und Paläontologie von Südamerika. Neues Jährbuch für Mineralogie, Geologie und Paläeontologie Beilband, 30, 717–788.
Bürgl, H. 1957. Biostratigrafia de la Sabana de Bogota y alrededores. Boletin Geologico. Instituto Geologico Nacional, 5, 113–185.
Chancellor, G.R., Kennedy, W.J. and Hancock, J.M.1994. Turonian ammonite faunas from central Tunisia . Special Papers in Palaeontology, 50, 1–118.
Choffat, P. 1898. Recueil d’études paléontologiques sur la faune crétacique du Portugal. I, espèces nouvelles ou peu connues. Deuxième série, Les Ammonées du Bellasien, des couches à Neolobites Vibrayeanus, du Turonien et du Sénonien. Commision des Travaux Géologiques du Portugal, 1898, 41–86.
Cobban, W.A. and Hook, S.C. 1989. Mid-Cretaceous molluscan record from west-central New Mexico. New Mexico Geological Society Guidebook, 40th Field conference, southeastern Colorado Plateau, 247–264. New Mexico Geological Society; Socorro.
Collignon, M. 1948. Ammonites néocrétacées du Menabe (Madagascar). I. Les Texanitidae. Annales Géologiques du Service des Mines de Madagascar, 13, 49–107 (1–63); 14, 7–101 (64–120).
Collignon, M. 1965. Atlas des fossiles caracteristiques de Madagascar (Ammonites). XII (Turonien), iv + 82 pp. Service géologique; Tananarive.
Collignon, M. 1967. Les céphalopodes crétacés du bassin côtier de Tarfaya. Notes et Mémoires Service des Mines et de la Carte Géologique de Maroc, 175, 7–178 (1966 imprint).
Coquand, H. 1859. Synopsis des animaux et des végétaux fossiles observés dans la formation crétacée du Sud-Ouest de la France. Bulletin de la Société Géologique de France, (2) 16, 945–1023.
Diener, C. 1925. Ammonoidea neocretacea. Fossilium Catalogus (1: Animalia), 29, 1–244. Douvillé, H. 1912. Évolution et classification des Pulchelliidés. Bulletin de la Société Géologique de France, (4) 11, 285–320.
Etayo-Serna, F. 1979. Zonation of the Cretaceous of Central Colombia by Ammonites. Publicacion Especial Ingeominas, 2, 1–186.
Fiege, K. 1930. Über die Inoceramen des Oberturon mit besonderer Berücksichtigung der im Rheinland und Westfalen Vorkommenden Formen. Palaeontographica, 73, 31–47.
Gerhardt, K. 1897a. Beiträge zur Kenntniss der Kreideformation in Venezuela und Peru. Neues Jahrbuch für Mineralogie Geologie und Paläontogie Beilageband, 11, 65–117.
Gerhardt, K. 1897b. Beiträge zur Kenntniss der Kreideformation in Columbien. Neues Jahrbuch für Mineralogie Geologie und Paläontogie Beilageband, 11, 118–208.
Gill, T. 1871. Arrangement of the Families of Mollusks. Smithsonian Miscellaneous Collections, 227, 1–49.
Grossouvre, A. de 1894. Recherches sur la craie supérieure, 2, Paléontologie. Les ammonites de la craie supérieure. Mémoires du Service de la Carte Géologique détaillée de la France, 264 pp. Imprimerie Nationale; Paris. (misdated 1893)
Hauer, F. von. 1866. Neue Cephalopoden aus den Gosaugebilden der Alpen. Sitzungsberichte der Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Classe, 53, 300–308 (1–9).
Heinz, R. 1930. Zur stratigraphischen Stellung der Sonnenbergschichte bei Waltersdorf in Sachsen (westsüdwestlich von Zittau). Beiträger zur Kenntnis der oberkretazischen Inoceramen IX. Jahresbericht des Niedersächsischen Geologischen Vereins zu Hannover, 24, 24–52.
Howarth, M.K. 1966. A mid-Turonian ammonite fauna from the Moçâmedes desert, Angola. Garcia de Orta, 14, 217–228.
Hyatt, A. 1889. Genesis of the Arietidae. Smithsonian Contributions to Knowledge, 673, 1–239.
Hyatt, A. 1900. Cephalopoda, 502–604. In: Zittel, K.A. von 1896–1900 (Ed.), Textbook of Palaeontology, transl. Eastman, 706 pp. C.R. Macmillan; London and New York.
Hyatt, A. 1903. Pseudoceratites of the Cretaceous. United States Geological Survey Monograph, 44, 1–351.
Ifrim, C., Múzquiz, H.P. and Stinnesbeck, W. 2019. Ammonoids, their biozonation and their palaeobiogeographic relation across the Turonian–Coniacian boundary in northern Coahuila, Mexico. Cretaceous Research, 102, 170–195.
Ifrim, C., Vega, F.J. and Stinnesbeck, W. 2011. Epizoic stramentid cirripedes on ammonites from late Cretaceous platy limestones. Journal of Paleontology, 85, 526–538.
Kakabadze, M.V. and Thieuloy, J.-P. 1991. Ammonites Hetéromorphes du Barremien et de l’Aptien de Colombie (Amérique de Sud). Géologie Alpine, 67, 81–113.
Kaplan, U. and Kennedy, W.J. 1994. Ammoniten des Westfälischen Coniac. Geologie und Paläontologie in Westfalen, 31, 1–155.
Karsten, H. 1858. Über die geognostischen Verhältniss des weslichen Columbien, der heutgen Republiken Neu-Granada und Ecuador. Amtlicher Bericht der versammlung Deutscher naturforscher und Äerzte, 32 (for 1856), 80–117.
Kauffman, E.G., Kennedy, W.J. and Wood, C. 1996. The Coniacian Stage and Substage Boundaries. Bulletin de l’Insitut Royal des Sciences Naturelles de Belgique, 66, 81–94.
Kennedy, W.J. 1984. Systematic palaeontology and stratigraphic distribution of the ammonite faunas of the French Coniacian. Special Papers in Palaeontology, 39, 1–131.
Kennedy, W.J. 1988. Late Cenomanian and Turonian ammonite faunas from north-east and central Texas. Special Papers in Palaeontology, 39, 1–129.
Kennedy, W.J. 2018 .Reymenticoceras gen. nov. nodosoidesappelatus Etayo-Serna, 1979, Benueites reymenti Collignon, 1966, and Tolimacoceras gen. nov. colombianus Etayo-Serna, 1979 from the lower Turonian of Tolima Province, Colombia. Cretaceous Research, 88, 384–391.
Kennedy, W.J. 2019. The Ammonoidea of the Upper Chalk. Part 1. Monograph of the Palaeontographical Society, 173, 1–112.
Kennedy, W.J. and Cobban, W.A. 1991. Coniacian ammonite faunas from the United States Western Interior. Special Papers in Palaeontology, 45, 1–96.
Kennedy, W.J., Cobban, W.A. and Landman, N.L. 2001. A revision of the Turonian members of the ammonite subfamily Collignoniceratinae from the United States Western Interior and Gulf Coast. Bulletin of the American Museum of Natural History, 267, 1–148.
Kennedy, W.J., Gale, A.S., Ward, D.J. and Underwood, C.J. 2008. Lower Turonian ammonites from Goulmima, southern Morocco. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 78, 149–177.
Kennedy, W.J. and Kaplan, U. 2019. Ammoniten aus dem Turonium des Münsterlander Kreidebeckens. Geologie und Paläontologie in Westfalen, 92, 1–223.
Kennedy,W.J. and Walaszczyk, I. 2004. Forresteria (Harleites) petrocoriensis (Coquand, 1859), from the Upper Turonian Mytiloides scupini Zone of Slupia Nadbrzena, Poland. Acta Geologica Polonica, 54, 55–59.
Kennedy, W.J., Wright, C.W. and Klinger, H.C. 1983. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Barroisiceratinae Basse, 1947. Annals of the South African Museum, 90, 241–324.
Klinger, H.C. and Kennedy, W.J. 1984. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Peroniceratinae Hyatt, 1900 . Annals of the South African Museum, 92, 113–294.
Koenen, A. von. 1897. Ueber Fossilien der unteren Kreide am Ufer des Mungo in Kamerun. Abhandlungen der Königlichen Gesellschaft der Wissenschaft zu Göttingen, Mathematischen- Physikalische Klasse, n.f., 1, 1–48.
Koenen, A. von. 1898. Nachtrag zu Ueber Fossilien der unteren Kreide am Ufer des Mungo in Kamerun. Abhandlungen der Königlichen Gesellschaft der Wissenschaft zu Göttingen, Mathematischen-Physikalische Klasse, n.f., 1, 49–65.
Korn, D., Ebbighausen, V., Bockwinkel, J. and Klug, C. 2003. The A-mode ontogeny in prolecanitid ammonites. Palaeontology, 46, 1123–1132.
Kossmat, F. 1895–1898. Untersuchungen über die Südindische Kreideformation. Beiträge zur Paläontologie Österreich-Ungarns und des Orients, 9 (1895), 97–203 (1–107); 11 (1897), 1–46 (108–153); 11 (1898), 89–152 (154–217).
Kullmann, J. and Wiedmann, J. 1970. Significance of sutures in phylogeny of Ammonoidea. University of Kansas, Paleontological Contributions, 42, 1–32.
Lüthy, J. 1918. Beitrag zur Geologie und Paläontologie von Péru. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 43, 1–87.
Matsumoto, T. 1955. Evolution of Peroniceratidae. Transactions and Proceedings of the Palaeontological Society of Japan, 18, 37–44.
Matsumoto, T. 1959. The Upper Cretaceous Ammonites of California. Part II. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, Special Volume 1, 1–172.
Matsumoto, T. 1965. A monograph of the Collignoniceratidae from Hokkaido, Part 1. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 14, 1–80.
Matsumoto, T. 1969. A monograph of the Collignoniceratidae from Hokkaido. Part III. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 19, 297–330.
Matsumoto, T. 1971. A monograph of the Collignoniceratidae from Hokkaido. Part V. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 21, 129–162.
Meek, F.B. 1877. Paleontology. United States Geological Survey, Exploration of the 40th Parallel, 4, 1–197.
Meister, C. and Abdallah, H. 2005. Précision sur les successions d’ammonites du Cénomanien–Turonien dans la région de Gafsa, Tunisie du centre-sud. Revue de Paléobiologie, 24, 111–199.
Orbigny, A. d’. 1850. Prodrome de Paléontologie stratigraphique universelle des animaux Mollusques et rayonnés faisant suite au cours élémentaire de Paléontologie et de Géologie stratigraphiques, Vol. 2, 427 pp. Masson; Paris.
Patarroyo, P. 2011. Sucesión de amonitas del Cretácico superior (Cenomaniano–Coniaciano) de la parte más alta de la Formación Hondita y de la Formación Loma Gorda en la quebrada Bambucá, Aipe-Huila, (Colombia, S.A.). Boletin de Geologia, 33, 69–92.
Patarroyo, P. 2016. Amonoideos y otros macrofósiles del lectoestratotipico de la Formación la Frontera, Turoniano superior- medio (cretácico superior) en San Francisco, Cundinamarca (Colombia). Boletin de Geologia, 38, 41–54.
Patarroyo, P. and Bengtson, P. 2018. Codazziceras ospinae (Karsten, 1858) from the Turonian (Upper Cretaceous) of Colombia. Cretaceous Research, 88, 392–398.
Peron, A. 1896–1897. Les ammonites du Crétacé supérieur de l’Algerie. Mémoires de la Société Géologique de France, 17, 1–88. (1–24, 1896; 25–88, 1897).
Pervinquière, L. 1907. Études de paléontologie tunisienne. 1. Céphalopodes des terrains secondaires. Carte Géologique de la Tunisie, v + 438 pp. J. Lamarre et Cie; Paris.
Reeside, J.B. jr. 1932. The Upper Cretaceous ammonite genus Barroisiceras in the United States. United States Geological Survey Professional Paper, 170-B, 9–29.
Renz, O. 1982. The Cretaceous ammonites of Venezuela, 132 pp. Maraven; Basel.
Reuss, A.E. 1845. Die Versteinerungen der böhmischen Kreideformation I, 58 pp. E. Schweizerbart’sche Verlagsbuch Druckerei; Stuttgart.
Reyment, R.A. 1954a. New Turonian (Cretaceous) ammonite genera from Nigeria. Colonial Geology and Mineral Resources, 4, 149–164.
Reyment, R.A. 1954b. Some new Upper Cretaceous ammonites from Nigeria. Colonial Geology and Mineral Resources, 4, 248–270.
Reyment, R.A. 1955. The Cretaceous Ammonoidea of Nigeria and the southern Cameroons. Bulletin of the Geological Survey of Nigeria, 25, 1–112.
Reyment, R.A. 1958. Neubeschreibung der Redtenbacher’schen ammoniten-originale aus den Gosauschichten. Stockholm Contributions to Geology, 2, 31–49.
Reyment, R.A. 1981. Colombia. In: Reyment, R.A. and Bengtson, P. (Eds), Aspects of mid-Cretaceous geology, 175–195. Academic Press; London.
Riedel, L. 1938. Amonitas del Cretacico inferior de la Cordillera Oriental. In: Estudios geológicos y paleontológicos sobre la Cordillera Oriental de Colombia, parte segunda, 7–78. Departamento de Minas y Petroleos, Ministerio de Industrias y Trabajo; Bogota.
Schlüter, C. 1867. Beitrag zur Kenntniss der jüngsten Ammoneen Norddeutschlands, 36 pp. A. Henry; Bonn. Schlüter, C. 1871–1876. Cephalopoden der oberen deutschen Kreide. Palaeontographica, 21, 1–24 (1871); 21, 25–120 (1872); 24, 1–144 (121–264) + x (1876).
Shimizu, S. 1932. On a new type of Senonian ammonite, Pseudobarroisiceras nagaoi Shimizu gen. et sp. nov. from Teshio Province, Hokkaido. Japanese Journal of Geology and Geography, 10, 1–4.
Solger, F. 1904. Die Fossilien der Mungokreide in Kamerun und ihre geologische Bedeutung, mit besonderer Berücksichtigung der Ammoniten. In: Esch, E., Solger, F., Oppenheim, P. and Jaekel, O. (Eds), Beiträge zur Geologie von Kamerun, 85–242. E. Schweizerbartsche Verlagsbuchhandlung; Stuttgart.
Sornay, J. 1957. Ammonites du Coniacien du massif de la Haute Medjerda (Constantine, Algérie). Bulletin de la Société Géologique de France, (6) 7, 187–196.
Spath, L.F. 1926. On new ammonites from the English Chalk. Geological Magazine, 63, 77–83.
Steinmann, G. 1930. Geologie von Peru, 448 pp. Carl Winters Universitäts Buchhandlung; Heidelberg.
Summesberger, H. and Kennedy, W.J. 1996. Turonian ammonites from the Gosau Group (Upper Cretaceous/Northern Calcareous Alps, Austria) including a revision of Barroisiceras haberfellneri (HAUER, 1866). Beiträge zur Paläontologie, 21, 105–177.
Summesberger, H. and Zorn, I. 2012. A catalogue of the type specimens of late Cretaceous cephalopods housed in the collections of the Geological Survey of Austria in Vienna. Jahrbuch der Geologischen Bundesanstalt, 152, 155–205.
Tröger, K.A. 1967. Zur Paläontologie, Biostratigraphie und faziellen Ausbildung der unteren Oberkreide) (Cenoman bis Turon). Teil 1: Paläontologie und Biostratigraphie Inoceramen des Cenoman bis Turon. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 12, 13–208.
Walaszczyk, I., and Cobban, W.A. 2000. Inoceramid faunas of the Upper Turonian–Lower Coniacian of the Western Interior of the United States. Special Papers in Palaeontology, 64, 1–118.
Walaszczyk, I. and Wood, C.J. 1998. Inoceramids and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder Quarry, Lower Saxony, Gemany, and the Słupia Nadbrzeżna section, Central Poland. Acta Geologica Polonica, 48, 395–434.
Wiedmann, J. 1966. Stammesgeschichte und System der posttriadischen Ammonoideen; ein überblick. Neues Jahrbuch fur Geologie und Paläontologie Abhandlungen, 125, 49–79; 127, 13–81.
Wiese, F. 1997. Das Turon und Unter-Coniac im Nordkantabrischen Becken (Provinz Kantabrien, Nordspanien): Faziesentwicklung, Bio-, Event und Sequenzestratigraphie. Berliner Geowissenschaftliche Abhandlungen, E24, 1–131.
Wiese, F. 2000. Coniacian (Upper Cretaceous) ammonites from the North Cantabrian Basin (Cantabria, northern Spain). Acta Geologica Polonica, 50, 125–141.
Woods, H. 1896. The Mollusca of the Chalk Rock: Part 1. Quarterly Journal of the Geological Society of London, 52, 68–98.
Wright, C.W.1957. Cretaceous Ammonoidea. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology. Part L, Mollusca 4, Cephalopoda Ammonoidea, 1–490. Geological Society of America and University of Kansas Press; New York and Lawrence.
Wright, C.W. 1996. Treatise on Invertebrate Paleontology. Part L, Mollusca 4: Cretaceous Ammonoidea (with contributions by J.H. Calloman (sic) and M.K. Howarth), xx + 362 pp. Geological Society of America and University of Kansas; Boulder, Colorado and Lawrence, Kansas.
Wright, C.W. and Wright, E.V. 1951. A survey of the fossil Cephalopoda of the Chalk of Great Britain. Monograph of the Palaeontographical Society, 105, 1–40.
Young, K. 1963. Upper Cretaceous ammonites from the Gulf Coast of the United States. University of Texas Bulletin, 6304, 1–373.
Zaborski, P.M.P. 1987. Lower Turonian (Cretaceous) ammonites from south-east Nigeria. Bulletin of the British Museum (Natural History), Geology, 41, 31–66.
Zaborski, P.M.P. 1990. Some Upper Cretaceous ammonites from southern Nigeria. Journal of African Earth Sciences, 10, 565–581.
Zittel, K.A. von. 1884. Handbuch der Palaeontologie. 1, Abt. 2; Lief 3, Cephalopoda, 329–522. R. Oldenbourg; Münich and Leipzig.
Go to article

Authors and Affiliations

William James Kennedy
1

  1. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3P Wand Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Eleven ammonites species are described from the condensed phosphate beds of Mangyshlak (in north-western Kazakhstan): Lewesiceras mantelli (Wright and Wright, 1951), Subprionocyclus neptuni (Geinitz, 1849), Prionocyclus spp., Allocrioceras angustum (J. de C. Sowerby, 1850), Hyphantoceras ( Hyphantoceras) reussianum (d’Orbigny, 1850), Hyphantoceras ( Hyphantoceras) cf. flexuosum (Schlüter, 1872), Eubostrychoceras ( Eubostrychoceras) cf. saxonicum (Schlüter, 1875), Scalarites? bohemicus (Fritsch, 1872), Sciponoceras bohemicum bohemicum (Fritsch, 1872), Scaphites geinitzii d’Orbigny, 1850, and Scaphites kieslingswaldensis Langenhan and Grundey, 1891. They provide an incomplete record that spans at maximum upper Middle Turonian to Lower Coniacian and at minimum Upper Turonian to Lower Coniacian. Associated inoceramid bivalves span an interval from upper Middle Turonian (based on the known first occurrence of Inoceramus inaequivalvis Schlüter, 1872) to the lower and middle Lower Coniacian, based on the known last occurrence of Cremnoceramus crassus inconstans (Woods, 1912), in the lower and middle parts of the Lower Coniacian.
Go to article

Authors and Affiliations

William James Kennedy
1
Ireneusz Walaszczyk
2

  1. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK and Department of EarthSciences, South Parks Road, Oxford OX1 3AN, UK
  2. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Over 130 species are documented from the Upper Albian, Cenomanian and Upper Turonian Fahdène Formation and correlatives in Central Tunisia and northern Algeria, based on material described by Henri Coquand (1852, 1854, 1862, 1880), Léon Pervinquière (1907, 1910), Georges Dubourdieu (1953), Jacques Sornay (1955), and new collections. The material consists predominantly of limonitic nuclei, together with adults of micromorphs. There is no continuous record, and a series of faunas are recognised that can be correlated with the zonation developed in Western Europe. These are the Upper Albian Ostlingoceras puzosianum fauna, Lower Cenomanian Neostlingoceras carcitanense and Mariella (Mariella) harchaensis faunas, the upper Lower to lower Middle Cenomanian Turrilites scheuchzerianus fauna, Middle Cenomanian Calycoceras (Newboldiceras) asiaticum fauna, Upper Cenomanian Eucalycoceras pentagonum fauna, and the Upper Turonian Subprionocyclus neptuni fauna. Two new micromorph genera are described, Coquandiceras of the Mantelliceratinae and Cryptoturrilites of the Turrilitinae. Most of the taxa present have a cosmopolitan distribution, with a minority of Boreal, North American and endemic taxa.

Go to article

Authors and Affiliations

William James Kennedy
Download PDF Download RIS Download Bibtex

Abstract

Upper Turonian to lower Coniacian marls of the Strehlen Formation of the Graupa 60/1 core were investigated for their foraminiferal content to add stratigraphical and palaeoenvironmental information about the transitional facies zone of the Saxonian Cretaceous Basin. Further comparison with foraminiferal faunas of the Brausnitzbach Marl (Schrammstein Formation) were carried out to clarify its relationship to the marls of the Graupa 60/1 core. Tethyan agglutinated marker species for the late Turonian to early Coniacian confirm the proposed age of the marls of the Graupa 60/1 core and the Brausnitzbach Marl. The palaeoenvironment of the marls reflects middle to outer shelf conditions. The maximum flooding zones of genetic sequences TUR6, TUR7 and CON1 could be linked to acmes of foraminiferal species and foraminiferal morphogroups. In general, a rise of the relative sea-level can be recognised from the base to the top of the marls of the Graupa 60/1 core. While agglutinated foraminiferal assemblages suggest a generally high organic matter influx and variable but high productivity in the Graupa 60/1 core, the Brausnitzbach Marl deposition was characterized by moderate productivity and a generally shallower water depth.
Go to article

Authors and Affiliations

Richard M. Besen
1
Mareike Achilles
2
Mauro Alivernini
2
Thomas Voigt
2
Peter Frenzel
2
Ulrich Struck
3 4

  1. Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstraße 74-100, 12249 Berlin, Germany
  2. Friedrich Schiller University of Jena, Institute of Earth Sciences, Burgweg 11, 07749 Jena, Germany
  3. Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstraße 74-100, 12249 Berlin
  4. Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
Download PDF Download RIS Download Bibtex

Abstract

The Indian Mesozoic dinosaur record is famous for documenting significant aspects of dinosaur evolution during the Triassic, Jurassic and Cretaceous periods. The Cenomanian–Turonian Nimar Sandstone, Lower Narmada valley, has produced fragmentary skeletal remains of Sauropoda indet. The Maastrichtian Lameta Formation has yielded at least 6 valid sauropod taxa and indeterminate titanosaurid remains, and at least 11 named (but likely oversplit) theropod taxa, i.e., 3 smaller-bodied species and 8 medium-to-large sized theropods. Apart from skeletal remains, Infra- and Intertrappean beds of peninsular India have yielded more than 10,000 dinosaur eggs belonging to 5 oofamilies and 15 oospecies. Most of the Indian ootaxa show distinct affinities with the Late Cretaceous ootaxa of four other continental areas – Spain, France, Argentina and Morocco. The presence of the two dominant oofamilies, Fusioolithidae and Megaloolithidae, in the Infra- and Intertrappean localities of peninsular India and three different continents (South America, Europe and Africa) further shows an ancient Gondwanan affinity and basic terrestrial association among these three landmasses. Based on the phylogenetic analysis of skeletal material, the most plausible pathway of dinosaur dispersal between India and Madagascar took place during the Late Cretaceous. The other conceivable dispersal pathway for the small animals was between India and Asia by means of the Kohistan Dras Volcanic Arc or a northeast pathway through Somalia, while the very large vertebrates, like theropod dinosaurs, may have emerged as a component of a ‘Pan Gondwanan’ model.
Go to article

Authors and Affiliations

Ashu Khosla
1
Spencer G. Lucas
2

  1. Department of Geology, Panjab University, Sector-14, Chandigarh-160014, India
  2. New Mexico Museum of Natural History, 1801 Mountain Rd. NW, Albuquerque, NM 87104, USA
Download PDF Download RIS Download Bibtex

Abstract

The lower (but not lowermost) part of the Upper Cretaceous Anaipadi Formation of the Trichinopoly Group in the area between Kulatur, Saradamangalam and Anaipadi, in the south-western part of the Cauvery Basin in southeast India yielded rich inoceramid and ammonite faunas. The ammonites: Mesopuzosia gaudama (Forbes, 1846), Damesites sugata (Forbes, 1846), Onitschoceras sp., Kossmaticeras (Kossmaticeras) theobaldianum (Stoliczka, 1865), Lewesiceras jimboi (Kossmat, 1898), Placenticeras kaffrarium Etheridge, 1904, and Pseudoxybeloceras (Schlueterella) sp., are characteristic of the Kossmaticeras theobaldianum Zone. The absence of Peroniceras (P.) dravidicum (Kossmat, 1895) indicates the presence of only lower part of this zone, referred to the nominative Kossmaticeras theobaldianum Subzone at the localities studied. The inoceramids present are Tethyoceramus madagascariensis (Heinz, 1933) and Cremnoceramus deformis erectus (Meek, 1877), recorded for the first time from the region. The latter dates the studied interval as early early Coniacian, and allows, for the first time, direct chronostratigraphic dating of the Tethyoceramus madagascariensis Zone, and consequently also of the Kossmaticeras theobaldianum Subzone. As inoceramids occur in the middle part of the ammonite-rich interval, the Kossmaticeras theobaldianum Subzone may be as old as latest Turonian and not younger than early early Coniacian. The base of the Coniacian lies in the lower, but not lowermost part of the Anaipadi Formation. Both inoceramids and ammonites represent taxa known from Madagascar and South Africa.

Go to article

Authors and Affiliations

Ireneusz Walaszczyk
William James Kennedy
Amruta R. Paranjape
Download PDF Download RIS Download Bibtex

Abstract

Faced with the challenges of sustainable groundwater resource management in the arid zone, the identification of re-serves and their monitoring have become vital. This paper aims to identify the Turonian aquifer in the Cretaceous Béchar basin, and calculate its transmissivity, permeability and storage coefficient, as well as its evolution over time. This Tu-ronian aquifer is characterized by marine limestones (gentle dip shelters 45° to the North and 5° to 10° to the South). Pumping tests revealed a transmissivity T of 10–4 to 10–2 m2·s–1, a permeability K of 10–6 to 10–4 m·s–1 and a storage coeffi-cient S of approximately 10–3. Two piezometric campaigns, carried out between (1976–2018), show a converging and con-stant flow direction from the North–East to the South–West and from the North–West to the South–East towards the outlet of the basin. Decreased values were observed in the North and South–West borders due to isopiezometric lines. However, this water table is not in a stationary state, it shows seasonal and interannual fluctuations in relation to the variable rainfall and the exploitation rate. In terms of facies, the projection of the two hydrochemical campaigns, during 1976 and 2018 on the Piper diagram, did not show any significant evolution, they are concentrated in the chlorinated and sulphated calcium and magnesium facies.

Go to article

Authors and Affiliations

Sonia Sadat
Hamidi Mansour
Abderrahmane Mekkaoui
Touhami Merzougui
Download PDF Download RIS Download Bibtex

Abstract

A novel stratigraphical scheme within the Folge Concept is described for the Cenomanian Chalk of England that is particularly suitable for investigating the regional changes in the lithofacies, diagenesis, geochemistry, and mineralogy of the sediments of the Chalk Sea leading up to the Cenomanian–Turonian Oceanic Anoxic Event. It is based on “isochronous” marker bands defined largely by calcitic macrofossil assemblages, and it avoids problems caused by the poor or non-preservation of ammonite assemblages and lateral changes in chalk lithofacies. Eight folgen are based on one, two, or more marker bands. Their sequences, lithologies and calcitic macrofossil assemblages are described from 33 exposures in the Northern Chalk Province of England. The folgen are named, in ascending order, the Belchford, Stenigot, Dalby, Bigby, Candlesby, Nettleton, Louth and Flixton, after villages in Lincolnshire and Yorkshire, England. The folgen are traced throughout the Transitional and Southern Chalk provinces of England. They are present in the Cenomanian chalk of northern Germany and northwest France. Regionally, an individual folge may display considerable vertical and lateral variation in general lithology and lithofacies whilst still maintaining their defining marker bands. The possibility of further refinement to the scheme is discussed.
Go to article

Authors and Affiliations

Christopher Vincent Jeans
1

  1. Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK
Download PDF Download RIS Download Bibtex

Abstract

The nature of the Cenomanian–Turonian Oceanic Anoxic Event (CTOAE) and its δ13 C Excursion is considered in the light of (1) the stratigraphical framework in which the CTOAE developed in the European shelf seas, (2) conclusions that can be drawn from new detailed investigations of the Chalk succession at three locations in England, at Melton Ross and Flixton in the Northern Province where organic-rich ‘black bands’ are present, and at Dover in the Southern Province (part of the Anglo-Paris Basin) where they are absent, and (3) how these conclusion fit in with the present understanding of the CTOAE. The application of the cerium anomaly method (German and Elderfield 1990) at Dover, Melton Ross and Flixton has allowed the varying palaeoredox conditions in the Chalk Sea and its sediments to be related to the acid insoluble residues, organic carbon, δ18O (calcite), δ13C (calcite), δ13C (organic matter), Fe 2+ and Mn2+ (calcite), and P/TiO2 (acid insoluble residue). This has provided evidence that the initial stages of the δ13C Excursion in England were related to (1) a drop of sea level estimated at between 45 and 85 metres, (2) influxes of terrestrial silicate and organic detritus from adjacent continental sources and the reworking of exposed marine sediments, and (3) the presence of three cold water phases (named the Wood, Jefferies and Black) associated with the appearance of the cold-water pulse fauna during the Plenus Cold Event. Conditions in the water column and in the chalk sediment were different in the two areas. In the Northern Province, cerium-enriched waters and anoxic conditions were widespread; the δ13C pattern reflects the interplay between the development of anoxia in the water column and the preservation of terrestrial and marine organic matter in the black bands; here the CTOAE was short-lived (~0.25 Ma) lasting only the length of the Upper Cenomanian Metoicoceras geslinianum Zone. In the Southern Province, water conditions were oxic and the δ13C Excursion lasted to the top of the Lower Turonian Watinoceras devonense Zone, much longer (~1.05 Ma) than in the Northern Province. These differences are discussed with respect to (1) the Cenomanian–Turonian Anoxic Event (CTAE) hypothesis when the ocean-continent-atmosphere systems were linked, (2) limitations of chemostratigraphic global correlation, and (3) the Cenomanian–Turonian Anoxic Event Recovery (CTOAER), a new term to define the varying lengths of time it took different oceans and seas to recover once the linked ocean-continent-atmosphere system was over. The possibility is considered that glacio- eustasy (the glacial control hypothesis of Jeans et al. 1991) with the waxing and waning of polar ice sheets, in association with the degassing of large igneous provinces, may have set the scene for the development of the Cenomanian–Turonian Anoxic Event (CTAE).
Go to article

Authors and Affiliations

Christophers V. Jeans
1
David S. Wray
2
C. Terry Williams
3
David J. Bland
4
Christopher J. Wood
5

  1. Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
  2. School of Science, University of Greenwich, Pembroke, Chatham Maritime, Kent, ME4 4TB, UK
  3. Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
  4. 15 Pains Close, Pinner, Middlesex, HA5 3BN, UK
  5. Deceased

This page uses 'cookies'. Learn more