Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Keywords IoUT UASN routing
Download PDF Download RIS Download Bibtex

Abstract

The Internet of Underwater Things (IoUT) is an emerging technology that promised to connect the underwater world to the land internet. It is enabled via the usage of the Underwater Acoustic Sensor Network (UASN). Therefore, it is affected by the challenges faced by UASNs such as the high dynamics of the underwater environment, the high transmission delays, low bandwidth, high-power consumption, and high bit error ratio. Due to these challenges, designing an efficient routing protocol for the IoUT is still a trade-off issue. In this paper, we discuss the specific challenges imposed by using UASN for enabling IoUT, we list and explain the general requirements for routing in the IoUT and we discuss how these challenges and requirements are addressed in literature routing protocols. Thus, the presented information lays a foundation for further investigations and futuristic proposals for efficient routing approaches in the IoUT.
Go to article

Authors and Affiliations

Manal Al-Bzoor
1
Walaa Ayyad
1
Ola Alta’ani
1

  1. Yarmouk University, Computer Engineering Department, Yarmouk University, Irbid, Jordan
Download PDF Download RIS Download Bibtex

Abstract

This experimental study reveals the effects of CaF2, FeMn and NiO additions to the base fluxes on tensile strength and percentage elongation of the weld metal. The aim of this study is to develop suitable flux for mild steel for high tensile strength, impact strength and ductility. Bead on plate welds were made using submerged arc welding process. Mathematical model for percentage elongation and UTS of mild steel welds were made. The elements transfer to the welds have been correlated with the above mechanical performance characteristics. The effect of oxygen content on weld elongation and UTS also has been deduced. This study shows that CaF2 and NiO are the significant factors for tensile strength while FeMn is not significant for tensile strength. However, for elongation besides CaF2, the interaction of CaF2 and FeMn was also found significant. The effects of basicity index of the flux and carbon equivalent of the welds on tensile strength and percentage elongation of the welds have also been evaluated.

Go to article

Authors and Affiliations

Brijpal Singh
Zahid A. Khan
Arshad Noor Siddiquee
Sachin Maheswari
Satish Kumar Sharma

This page uses 'cookies'. Learn more