Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Heat treatment processes, due to qualitative requirements for the cast machinery components and restrictions on energy consumption resulting on the one hand from environmental concerns, and on the other hand from a requirements coming from minimization of manufacturing costs, are resulting in searching after a technologies enabling obtainment of satisfactory results, in form of improved mechanical properties mainly, while minimizing (limiting) parameters of successive operations of the heat treatment. Heat treatment of the T6 type presented in this paper consists in operations of heating of investigated alloys to suitably selected temperature (range of this temperature was evaluated on the base of the ATD method), holding at such temperature for a short time, and next rapid cooling in water (20 oC) followed by artificial ageing, could be such technology in term s of above mentioned understanding of this issue. Performed T6 heat treatment with limited parameters of solutioning operation resulted in visible increase in tensile strength Rm of AlSi7Mg, AlSi7Cu3Mg and AlSi9Cu3(Fe) alloys.

Go to article

Authors and Affiliations

J. Pezda
Download PDF Download RIS Download Bibtex

Abstract

The results presented in this paper are a continuation of the previously published studies. The results of hest treatment of ductile iron with

content 3,66%Si and 3,80% Si were produced. The experimental castings were subjected to austempering process for time 30, 60 and 90

minutes at temperature 300o

C. The mechanical properties of heat treated specimens were studied using tensile testing and hardness

measurement, while microstructures were evaluated with conventional metallographic observations. It was again stated that austempering

of high silicone ferritic matrix ductile iron allowed producing ADI-type cast iron with mechanical properties comparable with standard

ADI.

Go to article

Authors and Affiliations

A. Krzyńska
A. Kochański
Download PDF Download RIS Download Bibtex

Abstract

Ductile iron casts with a higher silicone content were produced. The austempering process of high silicone ductile iron involving different

austempering times was studied and the results presented. The results of metallographical observations and tensile strength tests were

offered. The obtained results point to the fact that the silicone content which is considered as acceptable in the literature may in fact be

exceeded. The issue is viewed as requiring further research.

Go to article

Authors and Affiliations

A. Kochański
A. Krzyńska
T. Radziszewski
Download PDF Download RIS Download Bibtex

Abstract

This experimental study reveals the effects of CaF2, FeMn and NiO additions to the base fluxes on tensile strength and percentage elongation of the weld metal. The aim of this study is to develop suitable flux for mild steel for high tensile strength, impact strength and ductility. Bead on plate welds were made using submerged arc welding process. Mathematical model for percentage elongation and UTS of mild steel welds were made. The elements transfer to the welds have been correlated with the above mechanical performance characteristics. The effect of oxygen content on weld elongation and UTS also has been deduced. This study shows that CaF2 and NiO are the significant factors for tensile strength while FeMn is not significant for tensile strength. However, for elongation besides CaF2, the interaction of CaF2 and FeMn was also found significant. The effects of basicity index of the flux and carbon equivalent of the welds on tensile strength and percentage elongation of the welds have also been evaluated.

Go to article

Authors and Affiliations

Brijpal Singh
Zahid A. Khan
Arshad Noor Siddiquee
Sachin Maheswari
Satish Kumar Sharma
Download PDF Download RIS Download Bibtex

Abstract

The Zirconium 702 alloy effectively used in nuclear industry at various critical conditions like high temperature and high pressure. This survey is an assessment of insights into the mechanical properties of the metal when exposed to different temperatures along the rolling direction.The main objective of this work is to characterize the tensile properties, and fracture study of broken tensile test samples at various temperatures.The tensile samples tested in our current work are 100°C,150°C, and 200°C temperatures in different directions (0°, 45°, 90°) along with the rolling direction of the sheet. It is evident from the experimental results that temperatures significantly affect material properties. Temperature increases cause % elongation to increase, and strength decreases. ANOVA analysis revealed that temperature significantly influenced ultimate tensile strength (UTS), and yield strength (YS), as well as % elongation.The temperature contribution for UTS, YS, and % elongation is 41.90%, 31.60%, and 77.80% respectively. SEM fractured images showing the ductile type of behavior for all the temperatures.
Go to article

Authors and Affiliations

J. Lade
1
ORCID: ORCID
B. Dharavath
1
ORCID: ORCID
A. Badrish
2
ORCID: ORCID
S. Kosaraju
3
ORCID: ORCID
S.K. Singh
3
ORCID: ORCID
K.K. Saxena
4
ORCID: ORCID

  1. KG Reddy College of Engineering & Technology, Department of Mechanical Engineering, Hyderabad 500075, India
  2. DOFS, DRDL, Hyderabad, 500058, India
  3. GRIET, Department of Mechanical Engineering, Hyderabad 500090, India
  4. Division of Research and Development, Lovely Professional University, Phagwara 144411, India
Download PDF Download RIS Download Bibtex

Abstract

Present study introduces effect of forge application and elimination on microstructural and mechanical properties of AISI 316 during friction welding. Temperature measurements, microstructure, micro-hardness, tensile test, scanning electron microscopy and X-ray diffraction were evaluated. Maximum temperature recorded was 819°C while forge was applied between 357°C-237°C. Thermo-mechanically affected zone and highly plastically deformed zone were created at the interface at elimination and application of forge respectively. Ultimate tensile strength decreased and ductility increased when forge elimination compared to forge application. Tensile fracture was occurred adjacent to the welding interface for both cases, though, after forge application, ductile fracture mode and cleavage features through the fingerprints were observed in the fracture morphology. Redistribution and concentration of gamma iron in 111 level after forge application and heat treated of AISI 316.
Go to article

Authors and Affiliations

A. Jabbar Hassan
1
T. Boukharouba
1
D. Miroud
2

  1. Houari Boumediene University of Sciences and Technology (USTHB), Advanced Mechanic Laboratory (LMA), BP. 32, El-Alia, 16111 Bab-Ezzoaur, Algiers-Algeria
  2. Houari Boumediene University of Sciences and Technology (USTHB), Materials Science and Process Engineering Laboratory (LSGM), BP. 32, El-Alia,16111 Bab-Ezzoaur, Algiers-Algeria

This page uses 'cookies'. Learn more