Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Every change in the bottle geometry aswell as every change of physical and rheological properties poses a risk of excessive gas entrainment during a filling process. To maintain satisfactory filling efficiency there is a need to optimise this process with respect to all adverse phenomena which affect the fluid flow, such as spluttering on the bottom, air caverns formation and air entrainment with incoming liquid. This paper comprises numerical simulations of two filling methods. The first method involves dosing with a pipe placed over the free liquid surface of a fully filled bottle. The second method covers filling with a pipe located near the bottom. Moreover, the influence of rheological properties and surface tension values is considered. The comprehensive analysis of amount of entrained air represented by air volume fraction in dispensed liquid let the authors define the influence of filling speed on the mechanism and amount of entrapped air.

Go to article

Authors and Affiliations

Monika Jałowiecka
Łukasz Makowski

This page uses 'cookies'. Learn more