Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the years 1999-2002 bryological investigations were carried out within the .Kuźnic" nature reserve located in the Beskid Śląski Mts. near the village Twardorzcczka (Lipowa commune, Żywiec district). The "Kuźnic" nature reserve lies between 800 and IO I O m above sea level and covers 7 .22 ha. In its area coniferous forest Abieti-Piceetum predominates. In the result of this research 59 taxa have been noted. The analysis of frequency range showed that overwhelming majority of the moss flora consists of very rare taxa (40.7%). The most important components of the moss flora arc: one partially protected species in Poland and many species which arc rare in the Beskid Śląski Mts., for example Anomodon rugelii, Cirriphyl/um tommasinii, Neckera crispa, Orthotrichum stramineum and Racomitrium aquaticum. Five main ecological groups of mosses were characterized in detail.
Go to article

Authors and Affiliations

Adam Stebel
Download PDF Download RIS Download Bibtex

Abstract

At the end of 2018, when the Hučivá Cave (Hučivá diera, Rausch Keller) was explored in Tatranská Lomnica, profile deposits in rear areas of the cave were found disturbed by an amateur excavation. One stone artefact was first found in back-dirt clay-layer material at the excavation pit, later joined by four more specimens from the cleaned pit profile. The Typological analysis of the artefacts shows, that their closest parallels are found in inventories of the Magdalenian culture. Hučivá is the only cave in the whole Tatras with documented prehistoric settlement and the only Slovak cave with evidence of the Magdalenian culture. The discovery provides new information concerning subsistence strategies of late Pleistocene hunters in High Tatra Mountain landscapes. In light of this discovery, the possibility of seasonal movements along the northern slopes of this mountains range to the east and then south, through the mountain passes to the upper Spiš region should now be considered.

Go to article

Authors and Affiliations

Paweł Valde-Nowak
Marián Soják
Download PDF Download RIS Download Bibtex

Abstract

Middle Palaeolithic land exploitation strategies remain as yet an unexplored element in our understanding of Neanderthal behavioural patterns. Many different approaches to the problem were so far developed. Among others, biological, economic or environmental data concerning Neanderthals were considered as relevant. One of the focus points in such divagations is the issue of raw materials economy as undertaken by Neanderthals. The long-distance transport of knappable minerals (as a basis for the stone tools production) allows an insight into the economy and understanding of the size of land in use by Neanderthals group. Addressing this particular issue from the perspective of the Western Carpathian Mountains allows us to track the trails of mobility or trace possible contact zones between groups, and also to state, that at least in some circumstances Neanderthal groups were infiltrating and possibly crossing this highly elevated area on the S-N axis.

Go to article

Authors and Affiliations

Magda Cieśla
Download PDF Download RIS Download Bibtex

Abstract

Herein are presented the results of detailed bio- (calcareous dinocysts, calpionellids, foraminifers, saccocomids) and chemostratigraphic (δ13C) studies combined with high-resolution microfacies, rock magnetic and gamma-ray spectrometry (GRS) investigations performed on the upper Kimmeridgian–upper Valanginian carbonates of the Giewont succession (Tatricum, Giewont and Mały Giewont sections, Western Tatra Mountains, Poland). The interval studied covers the contact between the Raptawicka Turnia Limestone (RTL) Fm. and the Wysoka Turnia Limestone (WTL) Fm. Their sedimentary sequence is composed of micrites, pseudonodular limestones, cyanoid packstones, lithoclastic packstone and encrinites. A precise correlation with the previously published Mały Giewont section is ensured by biostratigraphy, rock magnetic and GRS logs. The methodology adopted has enabled the recognition of two stratigraphic discontinuities, approximated here as corresponding to the latest Tithonian–early (late?) Berriasian and the early Valanginian. The hiatuses are evidenced by biostratigraphic data and the microfacies succession as well as by perturbations in isotopic compositions and rock magnetic logs; they are thought to result from a conjunction of tectonic activity and eustatic changes. A modified lithostratigraphic scheme for the Giewont and the Osobita High-Tatric successions is proposed. The top of the RTL Fm. falls in the upper Tithonian, where cyanoid packstones disappear. At the base of the WTL Fm. a new Giewont Member is defined as consisting of a basal lithoclastic packstone and following encrinites.
Go to article

Authors and Affiliations

Damian Gerard Lodowski
1
Andrzej Pszczółkowski
2
Andrzej Wilamowski
3
Jacek Grabowski
3

  1. Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  2. Institute of Geological Sciences, Polish Academy of Sciences, Warszawa Research Centre, ul. Twarda 51/55, 00-818 Warsaw, Poland
  3. Polish Geological Institute-National Research Institute, ul. Rakowiecka 4, 00-975 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Water erosion in mountainous areas is a major problem, especially on steep slopes exposed to intense precipitation. This paper presents the analysis of the topsoil loss using the SWAT (Soil and Water Assessment Tool) model. The SWAT model is a deterministic catchment model with a daily time step. It was designed to anticipate changes taking place in the catchment area, such as climate change and changes in land use and development, including the quantity and quality of water resources, soil erosion and agricultural production. In addition to hydrological and environmental aspects, the SWAT model is used to address socio-economic and demographic issues, such as water supply and food production. This program is integrated with QGIS software. The results were evaluated using the following statistical coefficients: determination (R2), Nash–Sutcliff model efficiency ( NS), and percentage deviation index ( PBIAS). An assessment of modelling results was made in terms of their variation according to different land cover scenarios. In the case of the scenario with no change in use, the average annual loss of topsoil (average upland sediment yield) was found to be 14.3 Mg∙ha –1. The maximum upland sediment yield was 94.6 Mg∙ha –1. On the other hand, there is an accumulation of soil material in the lower part of the catchment (in-stream sediment change), on average 13.27 Mg∙ha –1 per year.
Go to article

Authors and Affiliations

Agnieszka W. Kowalczyk
1
ORCID: ORCID
Beata Grabowska-Polanowska
1
ORCID: ORCID
Tomasz Garbowski
1
ORCID: ORCID
Marek Kopacz
2
ORCID: ORCID
Stanisław Lach
2
ORCID: ORCID
Robert Mazur
2
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  2. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Environmental Management and Protection, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Jurassic and Lower Cretaceous successions of the Manín Unit of the Central Western Carpathians are exposed in Butkov Quarry in the Middle Váh Region, Slovakia. A significant part of the macrofauna belonging to neocomitid ammonites, formerly classified under the genus Teschenites Thieuloy, 1971, occurs in deposits spanning the Valanginian/Hauterivian boundary. The original definition of Teschenites was accompanied by uncertainties in the taxonomic and stratigraphic position of its original type species, i.e., Hoplites neocomiensiformis Uhlig, 1902. The present contribution focuses on and provides a possible taxonomic solution by establishing the new genus Tescheniceras. In Butkov Quarry, the new genus includes five species. Tescheniceras flucticulum (Thieuloy, 1977), the type species, is the most abundant. Tescheniceras callidiscum (Thieuloy, 1971), the subzonal species for the uppermost Valanginian (Thieuloy 1971b), occurs only sporadically. Because Acanthodiscus radiatus (Bruguiére, 1789), the index species for the basal Hauterivian (radiatus Zone) in the international ammonite zonation, does not occur in the locality, the basal Hauterivian is indicated by the first appearance of the genus Spitidiscus Kilian, 1910.

Go to article

Authors and Affiliations

Zdeněk Vašíček
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an interpretation of sedimentologic, paleomagnetic, and geochemical data collected in the Upper Kimmeridgian–Valanginian carbonates of the Giewont series (Giewont and Mały Giewont sections, High-Tatric succession, Western Tatra Mountains, Poland). The studied succession provides insight into the sedimentary conditions prevailing in the South Tatric Ridge (Tatricum), a submarine elevation located between the Zliechov Basin (Fatricum) and the Vahic (=South Penninic) Ocean. The sedimentary sequence includes micrites, pseudonodular limestones, cyanoid packstones, lithoclastic packstone, and encrinites. The results are discussed with regards to their significance for detrital input, paleoclimate, and paleoproductivity, which in turn are considered in the context of both local and regional paleoenvironmental trends and events. The greatest depositional depths during the latest Kimmeridgian–earliest Tithonian are documented by the occurrence of pseudonodular limestones. A Tithonian shallowing trend is demonstrated via the increasing size and roundness of cyanoids, while the final (?)emergence and erosion in the South Tatric Ridge is documented by earliest Cretaceous disconformities. This process might have been related to both falling sea-level during the major eustatic regressive cycle and tectonic uplift caused by the mutually related (re)activation in the Neotethyan Collision Belt and rifting in the Ligurian-Penninic-Vahic Oceans. The highest lithogenic influx (although still low; max 0.5% of Al content) during the Late Kimmeridgian is considered as associated with relatively humid climate conditions, whereas a subsequent decreasing trend is thought to result from aridification during the latest Kimmeridgian–earliest Tithonian. Ultimately, deposition in the High-Tatric zone was affected by both large-scale environmental perturbations characteristic of the latest Jurassic (climate changes, variations in seawater pH, monsoonal upwelling, lithogenic input, etc.), as well as local sedimentary controls, predominantly the oxygenation state of bottom waters and tectonic movements.

Supplementary Material 1




Go to article

Authors and Affiliations

Damian Gerard Lodowski
1
Jacek Grabowski
2

  1. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  2. Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Carpathian Orava Basin is a tectonic structure filled with Neogene and Quaternary deposits superimposed on the collision zone between the ALCAPA and European plates. Tectonic features of the south-eastern margin of the Orava Basin and the adjoining part of the fore-arc Central Carpathian Palaeogene Basin were studied. Field observations of mesoscopic structures, analyses of digital elevation models and geological maps, supplemented with electrical resistivity tomography surveys were performed. Particular attention was paid to joint network analysis. The NE-SW-trending Krowiarki and Hruštinka-Biela Orava sinistral fault zones were recognized as key tectonic features that influenced the Orava Basin development. They constitute the north-eastern part of a larger Mur-Mürz-Žilina fault system that separates the Western Carpathians from the Eastern Alps. The interaction of these sinistral fault zones with the older tectonic structures of the collision zone caused the initiation and further development of the Orava Basin as a strike-slip-related basin. The Krowiarki Fault Zone subdivides areas with a different deformation pattern within the sediments of the Central Carpathian Palaeogene Basin and was active at least from the time of cessation of its sedimentation in the early Miocene. Comparison of structural data with the recent tectonic stress field, earthquake focal mechanisms and GPS measurements allows us to conclude that the Krowiarki Fault Zone shows a stable general pattern of tectonic activity for more than the last 20 myr and is presently still active.

Go to article

Authors and Affiliations

Mirosław Ludwiniak
Michał Śmigielski
Sebastian Kowalczyk
Maciej Łoziński
Urszula Czarniecka
Lena Lewińska

This page uses 'cookies'. Learn more