Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Worldwide Interoperability for Microwave Access (WiMAX), based on the IEEE 802.16 standards, is a technology that offers low cost mobile broadband access to multimedia and internet applications for operators and end-users. Similarly to cellular phone or other Radio Frequency devices, WiMAX has to be considered as a possible source of electromagnetic pollution and so monitoring its emission could be necessary to verify compliance with the applicable emission limits. Generally, the monitoring of the electromagnetic pollution is performed by means of a suitable measurement chain constituted by an antenna connected to a traditional spectrum analyzer. The use of this kind of device to measure the power of digital modulated noise-like signals, such as WiMAX, requires to use proper measurement methods and to carefully set many instrument parameters to obtain reliable measurement results, otherwise a significant underestimate or overestimate of the human exposure can be obtained.

In this framework, this paper investigates the feasibility of using the traditional spectrum analyzer to perform the electromagnetic pollution measurements due to WiMAX devices. A large experimental campaign is carried out to identify the most proper measurement method and spectrum analyzer settings able to warrant reliable measurements.

Go to article

Authors and Affiliations

Giovanni Betta
Domenico Capriglione
Gianfranco Miele
Download PDF Download RIS Download Bibtex

Abstract

The Non Line of Sight (NLOS) broadband wireless access provided by Worldwide Interoperability for Microwave Access (WiMAX) operating in 2-11 GHz frequency is susceptible to the effects of multipath propagation, diffraction fading, vegetation attenuation, shadowing loss etc. In order to overcome these effects effective fade mitigation techniques, have to be implemented. The Orthogonal Frequency Division Multiplexing- Multiple Input Multiple Output (OFDM-MIMO) is an efficient method that helps in combatting the fading and providing higher SNR to the WiMAX system. According to the IEEE 802.16 specification, for QPSK modulation, a threshold SNR of 6 dB is required for the link to operate. In the present work the use of OFDM-MIMO achieves a SNR above this operating threshold.
Go to article

Authors and Affiliations

Sharmini Enoch
1
Ifiok Otung
2

  1. Department of Electronics and Communications,Noorul Islam University, India
  2. Faculty of Engineering and Informatics, Department of Biomedical and Electronics Engineering University of Bradford, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

A compact Sierpinski Carpet square fractal multiband antenna operating at 3.9 (WiMAX) /6.6 (Satellite TV) /8.1/10.7/11.8 GHz (X-band) is presented. The proposed Microstrip Patch Antenna (MSPA) consists of a Sierpinski Carpet square fractal radiator in which square slots are etched out and a tapered microstrip feed line. The Sierpinski Carpet square fractal patch modifies the current resonant path thereby making the antenna to operate at five useful bands. Impedance matching at these bands are solely achieved by using Sierpinski square slot and tapered feedline, thus eliminating the need of any external matching circuit. The dimensions of the compact antenna is 32 x 32 x 1,6 mm3 and exhibits S11<-10dB bandwidth of about 4.8% (4.01-3.82 GHz), 2.1% (6.62-6.48 GHz), 2.7% (8.24-8.02 GHz), 2.1% (10.77-10.54 GHz) and 21% (12.1-11.60 GHz) with the gain of 7.57/3.91/3.77/6.74/1.33 dB at the operating frequencies 3.9/6.6/8.1/10.7 and 11.8 GHz, respectively under simulation analysis carried out by using HFSS v.13.0.

Go to article

Authors and Affiliations

Imran Khan
Geetha D. Devanagavi
K.R. Sudhindra
K.M. Vandana
M.M. Manohara Pai
Tanweer Ali
Download PDF Download RIS Download Bibtex

Abstract

This paper presents frequency reconfigurable dual band antenna for WiMAX and LTE 2500 band applications using four PIN diode switches. The antenna is compact in size with dimensions of 30 x 30 x 0.8 mm3 and designed on FR-4 dielectric substrate with a partial ground plane. The fabricated antenna operates in the frequency range of LTE and WiMAX (2.5-2.69 GHz and 3.4-3.6 GHz) respectively. The frequencies can be controlled by using PIN diodes and antenna attained the gain ranging of 3.34-4.46 dBi. This designed antenna resonating at 2.52 and 3.49 GHz when the PIN diodes are in ON state and resonating at 2.68 and 3.58 GHz when PIN diodes are in OFF state. The proposed antenna has bidirectional radiation at upper frequency bands and unidirectional at lower frequency bands. The proposed split ring structured antenna has the radiation efficiency of 94.12% at 2.52 GHz and 90.34% at 3.49 GHz in ON state. Antenna providing good agreement between the measured (Antenna measurement setup with VNA) and simulated results (Ansys-HFSS).

Go to article

Authors and Affiliations

B.T.P. Madhav
B. Prudhvi Nadh
T. Anilkumar
P. Pardhasaradhi
M.C. Rao
P. Lakshman

This page uses 'cookies'. Learn more