Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 79
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper studies the influence of different cooling technologies on the power density of a traction machine for heavy-duty distribution transport. A prototype induction machine is built with a housing cooling jacket, potted end-windings, entire winding cooling, and shaft cooling. Electromagnetic finite element and thermal lumped-parameter models are parameterized and verified using test bench measurements. The influence of each thermal resistance along the heat paths is studied and discussed. The results are used for studying different cooling technologies. The results indicate an improvement of the continuous power density up to 108% using shaft cooling and up to 15.6% using entire winding cooling.
Go to article

Authors and Affiliations

Benedikt Groschup
1
ORCID: ORCID
Daniel Butterweck
1
Kay Hameyer
1
ORCID: ORCID

  1. Institute of Electrical Machines (IEM), RWTH Aachen University, Schinkelstraße 4, 52062 Aachen, Germany
Download PDF Download RIS Download Bibtex

Abstract

On power generation and the future of Polish offshore wind farms.
Go to article

Authors and Affiliations

Paweł Flaszyński
1
Karol Mitraszewski
2
Joanna Markowska Cerić
2

  1. PAS Institute of Fluid-Flow Machinery, Gdańsk, Poland
  2. PGE Baltica sp. z o.o., Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the author presents a certain method of calculation of Horizontal Axis Wind Turbine (HAWT) performance for yawed flow conditions. The presented model is developed on the basis of propeller theory described in [23). Te model employs the results of the vortex theory of propeller combined with momentum and angular momentum theorems for the HAWT wake. In the model, the blade element is regarded as a source of tangential and axial force acting on air at actuator disk surface. The momentum equations are corrected for the effect of finite number of blades by introduction of Prandtl tip-loss factor to the equations. Thanks to the approximation of lift force coefficient vs. angle of attack by sine curve, one may get a quadratic equation for local axial velocity component. Tangential component of induced velocity may be calculated from relations obtained from vortex theory of HAWT. This allows us to avoid an iterative solution for induced velocity, unlike in most of the HAWT and propeller theories. The blade section drag is incorporated to calculations of total drag of rotor and power, when induced velocity components are known, and hence blade element angle of attack is determined. To incorporate the effect of blade element stall-delay due to blade rotation, a simple semi-empirical model proposed by Tangier and Selig has been applied. The calculations are compared with experimental data obtained at Riso 100 kW experimental turbine test site and at the Grumman Wind Stream 33 turbine modified by NREL. The comparison includes power output as well as blade element angles of attack. The presented results show that the method described in the paper underestimates performance for low speed winds, whereas for strong winds the power output is slightly overestimated. For average angles of attack, one may see that for small tip speed ratios angles of attack are overestimated. At high tip speed ratios, however, angles of attack are underestimated. It was shown that there is a need to take into account the work done by side force on the tangential inflow component to obtain correct power curves for yawed flow conditions.
Go to article

Authors and Affiliations

Piotr Strzelczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design method and the construction details of a subsonic low-speed wind tunnel, which has been designed to achieve the flow velocity of 35 m/s in the measurement section with expected uniform velocity field at its inlet. To achieve such objectives a very detailed design was performed using a theoretical 1D analysis and computational fluid dynamics simulations. This approach was applied to improve the flow quality along the wind tunnel sections. When the wind tunnel has been launched a direct comparison of the experimentally measured flow field in the test section and numerical simulation results was conducted. Such comparison of the simulation results with the experimental one is presented in this paper. The obtained results confirm that assumed wind tunnel design method was correct, i.e. the pressure drop in the wind tunnel has been predicted very well and drive system is effective and sufficient to accelerate the airflow to required values.
Go to article

Bibliography

[1] Barlow J.B., Rae Jr W.H., Pope A.: Low-Speed Wind Tunnel Testing. John Wiley and Sons; New York 1999.
[2] Bradshaw P., Pankhurst R.C.: The design of low-speed wind tunnels. Prog. Aerosp. Sci. 5(1964), 1–69.
[3] Anderson J.D. Jr.: Fundamentals of Aerodynamics (5th Edn.). McGraw-Hill; 2011.
[4] Kneba Z.: Modeling of the internal combustion engine cooling system. Arch. Thermodyn. 40(2019), 3, 109–121.
[5] Muszynski T., Andrzejczyk R., Park W.I., Dorao C.A.: Heat transfer and pressure drop characteristics of the silicone-based plate heat exchanger. Arch. Thermodyn. 40(2019), 1, 127–143.
[6] Mehta J., Bradshaw P.: Design rules for small low speed wind tunnels. Aeronaut. J. 83(1979), 827, 443–453.
[7] Stathopoulos T.: Design and fabrication of a wind tunnel for building aerodynamics. J. Wind Eng. Ind Aerod. 16(1984), 2–3, 361–376.
[8] Cattafesta L., Bahr C., Mathew J.: Fundamentals of wind-tunnel design. In: Encyclopedia of Aerospace Engineering. John Wiley and Sons, Hoboken 2010.
[9] Bell J.H., Mehta R.D.: Boundary-layer predictions for small low-speed contractions. AIAA J. 27(1989), 3, 372–374.
[10] Noor A., Ed.: Wind Tunnel Designs and their Diverse Engineering Applications. IntechOpen, 2013.
[11] Discetti S., Ianiro A., Aref H.: Experimental Aerodynamics. CRC Press – Taylor & Francis Group; Boca Raton 2017.
[12] Idelchik I.E.: Handbook of Hydraulic Resistance. Coefficients of Local Resistance and of Friction. US Atomic Energy Commission and the National Science Foundation. Washington DC 1966.
[13] Ansys Fluent Fluid Simulation Software https://www.ansys.com/products/fluids/ ansys-fluent (access: 5 Jan. 2020).
[14] Ansys Meshing https://www.ansys.com/products/platform/ansys-meshing (access: 5 Jan. 2020).
[15] Ochrymiuk T.: Numerical analysis of microholes film/effusion cooling effectiveness. J. Therm. Sci. 26(2017), 5, 459–464.
[16] Szwaba R., Ochrymiuk T., Lewandowski T., Czerwinska J.: Experimental investigation of microscale effects in perforated plate aerodynamics. J. Fluids Eng. 135(2013), 12, 121104-1-10
Go to article

Authors and Affiliations

Ryszard Szwaba
1
Krzysztof Hinc
1
Tomasz Ochrymiuk
1
Zbigniew Krzemianowski
1
Piotr Doerffer
1
Marcin Kurowski
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Eurocode standard recommends using fundamental basic wind velocity (characteristic velocity) as the design value in civil engineering. There are different approaches to estimate this value depending on the climate features of the given area and the quality of environmental data. The estimation of the characteristic value requires statistical analysis of historical data regarding wind velocities measured throughout the country at meteorological stations. The results of the analysis are probability density distributions of this random variable for each meteorological station. On this basis, values of characteristic wind velocity with a mean return period of 50 years are determined. The zones with uniform velocities are delineated on the map of the country. In the case of Poland the last evaluation of wind zones took place over 15 years ago. Higher quality of measurement data on the one hand, and the introduction of the second generation of Eurocode standards on the other hand, create a need to check and update these zones. This work presents theoretical basis for the estimation of characteristic values of random variables in the context of wind velocity, comprehensively reviews practical methods used for this purpose and summarizes current situation in Poland, finally discusses the issues related to the heterogeneity of wind data, illustrating them with an example.
Go to article

Authors and Affiliations

Tomasz Lipecki
1
ORCID: ORCID
Mariusz Gaczek
2
ORCID: ORCID
Adam Goliger
3
Grzegorz Kimbar
4
ORCID: ORCID
Wojciech Wegrzynski
5
ORCID: ORCID

  1. Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
  2. Poznan University of Technology, Piotrowo 5, 60-965 Poznan, Poland
  3. Firelab, Pretoria, South Africa
  4. Building Research Institute, Filtrowa 1, 00-611 Warszawa, Poland
  5. Building Research Institute, 00-611Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

On the basis of 35 one-hour series of the measurement of the wind velocity, read out every two minutes, the wind structure at the Arctowski Station, situated on Admiralty Bay, King George Island, was analysed. Very strong turbulence was found with air flow directions from over the area of the Island (S, SW. W and NW) and laminarity with directions from SE, E, NE and partly N, i.e. when the air flows from Admiralty Bay or from over the open waters of Bransfield Strait. The qustiness coefficient, the relationship between the maximum and mean velocities and the intensity of turbulence were determined for the two flow types. Two extremely different cases, in terms of flow character, were considered, by determining for them the distributions of instantaneous velocities and those of oscillations.

Go to article

Authors and Affiliations

Dominik Kowalski
Download PDF Download RIS Download Bibtex

Abstract

Power spectrum techniques were applied to two time series of wind speed values recorded at the Arctowski Station in order to investigate the influence of turbulent and laminar air flow on the quasi-periodicity of the micro-scale wind structure.

Go to article

Authors and Affiliations

Ewa Skrzypczak
Download PDF Download RIS Download Bibtex

Abstract

The analysis of speed and direction distribution of upper wind in the layer up to 3500 m was carried out on the basis of pibal ascents performed over the Admiralty Bay (King George Island, South Shetland Islands).

Go to article

Authors and Affiliations

Jolanta Kratke
Danuta Wielbińska
Download PDF Download RIS Download Bibtex

Abstract

By means of small wind turbines, it is possible to create distributed sources of electricity useful in areas with good wind conditions. Sometimes, however, it is possible to use small wind turbines also in areas characterized by lower average wind speeds during the year. At the small wind turbine design stage, various types of technical solutions to increase the speed of the wind stream, as well as to optimally orientate it, can be applied. The methods for increasing the efficiency of wind energy conversion into electricity in the case of a wind turbine include: the use of a diffuser shielding the turbine rotor and the optimization of blades mounted on the turbine rotor. In the paper, the influence of the diffuser and rotor blades geometry on the efficiency of an exemplary wind turbine for exploitation in the West Pomeranian Province is investigated. The analyses are performed for three types of the diffuser and for three types of rotor blades. Based on them, the most optimal shapes of the diffuser and blades are selected due to the efficiency of the wind turbine. For the turbine with the designed diffuser, calculations of the output power for the assumed different values of the average annual wind speed and the constant Betz power factor and the specified generator efficiency are made. In all the analyzed cases, the amount of energy that can be generated by the turbine during the year is also estimated. Important practical conclusions are formulated on the basis of these calculations. In the final part of the paper, a 3D model of the wind turbine with the diffuser and rotor blades chosen based on earlier analyses is presented. As a material for the diffuser and rotor blades, glass fiber type A is applied. By means of calculations using the finite element method, the limit displacement of the turbine structure under the influence of a hurricane wind are determined. Based on these calculations, the correctness of the modelled small wind turbine structure has been demonstrated.

Go to article

Authors and Affiliations

Kamil Krzysztof Skorupa
Rafał Grzejda
Download PDF Download RIS Download Bibtex

Abstract

This article considers designing of a renewable electrical power generation system for self-contained homes away from conventional grids. A model based on a technique for the analysis and evaluation of two solar and wind energy sources, electrochemical storage and charging of a housing area is introduced into a simulation and calculation program that aims to decide, based on the optimized results, on electrical energy production system coupled or separated from the two sources mentioned above that must be able to ensure a continuous energy balance at any time of the day. Such system is the most cost-effective among the systems found. The wind system adopted in the study is of the low starting speed that meets the criteria of low winds in the selected region under study unlike the adequate solar resource, which will lead to an examination of its feasibility and profitability to compensate for the inactivity of photovoltaic panels in periods of no sunlight. That is a system with fewer photovoltaic panels and storage batteries whereby these should return a full day of autonomy. Two configurations are selected and discussed. The first is composed of photovoltaic panels and storage batteries and the other includes the addition of a wind system in combination with the photovoltaic system with storage but at a higher investment cost than the first. Consequently, this result proves that is preferable to opt for a purely photovoltaic system supported by the storage in this type of site and invalidates the interest of adding micro wind turbines adapted to sites with low wind resources.

Go to article

Authors and Affiliations

Mohammed Salim Hadjidj
Nacereddine Bibi-Triki
Faouzi Didi
Download PDF Download RIS Download Bibtex

Abstract

International scales describing the intensity of tornadoes are investigated along with reports from the Polish Government Security Centre on all types of wind storms in Poland. Then, collected tornado reports for the years 1899–2019 in Poland, a set of the annual maximum gust wind speeds measured at 39 meteorological stations from 1971 to 2005 (35 years), descriptions of Poland’s strongest wind storms in the 21st century, estimating the risk of significant strong and extreme winds in Poland, and classification of maximum wind speeds by Lorenc (2012) are presented. Based on these data, i.e. measured and estimated wind speeds, this paper proposes two separate intensity scales to categorize synoptic, thunderstorm, and downslope winds (in the Tatra and Karkonosze regions), derechos, tornadoes, and downbursts, i.e. all types of wind storms. These scales are simpler than the one put forward by Lorenc (2012). These two scales cover a range of maximum wind speeds from 20 to 90 m/s. This proposal is only applicable to Poland. Other countries may determine whether it applies to them.

Go to article

Authors and Affiliations

Tadeusz Chmielewski
Henryk Nowak
Download PDF Download RIS Download Bibtex

Abstract

Pollution continues to experience a rapid increase so cities in the world have required the use of renewable energy. One of the keys that can prevent climate change with a sustainable system is renewable energy. Renewable energy production, especially for hybrid systems from biomass and wind, is the objective of the analysis in this work. The potential of feedstock for different biofuels such as bio-diesel, bio-ethanol, bio-methane, bio-hydrogen, and biomass is also discussed in this paper. The sustainability of the energy system for the long term is the main focus of work in this investigation. The configuration of the hybrid system between biomass energy and wind energy as well as some problems from various design factors are also presented. Based on the findings, this alternative energy utilization through biomass-based hybrids can save costs and improve environmental conditions, especially for the electrification of off-grid rural areas. This paper will provide important information to policymakers, academics, and investors, especially in carrying out the development and factors related to the utilization of wind-biomass-based hybrid energy systems.
Go to article

Bibliography

  1. Aguilar-Rivera, N., Michel-Cuello, C., Cervantes-Niño, J.J, Gómez-Merino, F.C. Olvera, & Vargas, L.A. (2021). 12 - Effects of public policies on the sustainability of the biofuels value chain. In: Ray RCBT-SB (ed) Applied Biotechnology Reviews. Academic Press, pp 345–379
  2. Al-Ghussain, L., Darwish, Ahmad, A., Abubaker, A. M. & Mohamed, M. A. (2021). An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses. Sustain Energy Technol Assessments, 46:101273. DOI:10.1016/j.seta.2021.101273
  3. Alagumalai, A., Mathimani, T., Pugazhendhi, A., Atabani, A.E., Brindhadevi, K. & Canh, N.D. (2020). Experimental insight into co-combustion characteristics of oxygenated biofuels in modified DICI engine. Fuel, 278:118303. DOI:10.1016/j.fuel.2020.118303
  4. Amjith, L.R. & Bavanish, B. (2021a). Design and analysis of 5 MW horizontal axis wind turbine. Mater Today Proc. 37, pp. 3338–3342.
  5. Amjith, L.R. & Bavanish, B. (2021b). Optimization of horizontal axis wind turbine blade using FEA. Mater Today Proc. 37, pp. 3367–3371. DOI:10.1016/j.matpr.2020.09.215
  6. Arias, D.M., Ortíz-Sánchez, E., Okoye, P.U., Rodríguez-Rangel, H., Ortega, A.B., Longoria, A., Domínguez-Espíndola, R. & Sebastian, P.J. (2021). A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Sci Total Environ. 794:148636. DOI:10.1016/j.scitotenv.2021.148636
  7. Arteaga-López, E. & Angeles-Camacho, C. (2021). Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines. Energy, 220:119701. DOI:10.1016/j.energy.2020.119701
  8. Arumugam, P., Ramalingam, V. & Bhaganagar, K. (2021). A pathway towards sustainable development of small capacity horizontal axis wind turbines – Identification of influencing design parameters & their role on performance analysis. Sustain Energy Technol Assessments, 44:101019. DOI:10.1016/j.seta.2021.101019
  9. Bodzek, M. (2022). Nanoparticles for water disinfection by photocatalysis: A review. Arch Environ Prot. 48, pp. 3–17. DOI:10.24425/aep.2022.140541
  10. Chen, H., Xia, A., Zhu, X., Huang, Y., Zhu, X. & Liao, Q. (2022). Hydrothermal hydrolysis of algal biomass for biofuels production: A review. Bioresour Technol. 344:126213. DOI:10.1016/j.biortech.2021.126213
  11. Chen, J., Li, X., Jia, W., Shen, S., Deng, S., Ji, B. & Chang, J. (2021). Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. J Hazard Mater, 404:124125. DOI:10.1016/j.jhazmat.2020.124125
  12. Chilakamarry, C.R., Mimi Sakinah, A.M., Zularisam, A.W., Pandey, A. & Dai-Viet, N. Vo. (2021). Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review. Environ Technol Innov. 24:101902. DOI:10.1016/j.eti.2021.101902
  13. Chmielniak, T. (2019). Wind and solar energy technologies of hydrogen production – a review of issues. Polityka Energ - Energy Policy J. 22, pp.5–20.
  14. Chowdhury, H., Loganathan, B., Mustary, I., Alam, F. & Mobil, S.M.A. (2019). Chapter 12 - Algae for biofuels: The third generation of feedstock. [In:] Basile, A., Dalena, F.B.T-S. and TG, F. (eds). Elsevier, pp 323–344
  15. Chudy, R., Szulecki, K., Siry, J. & Grala, R. (2021). Woody Biomass for Energy Production. Acad - Mag Polish Acad Sci. 62–65. DOI:10.24425/academiaPAS.2021.138414
  16. Council GWE (2021) GWEC global wind report 2021. Glob Wind Energy Counc Brussels, Belgium
  17. Das, P.V.P. C., Mathimani, T. & Pugazhendhi, A. (2021a). A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy. Sci Total Environ. 766:144213. DOI:10.1016/j.scitotenv.2020.144213
  18. Das, P.V.P.C., Mathimani, T. & Pugazhendhi, A. (2021b). Recent advances in thermochemical methods for the conversion of algal biomass to energy. Sci Total Environ. 766:144608. DOI:10.1016/j.scitotenv.2020.144608
  19. Deviram, G., Mathimani, T., Anto, S., Ahamed, T.S., Ananth, D.A. & Pugazhendhi, A. (2020). Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod. 253:119770. DOI:10.1016/j.jclepro.2019.119770
  20. Erdiwansyah, E., Mahidin, M., Husin, H., Nasaruddin, N., Khairil, K., Zaki, M. & Jamaluddin, J. (2020). Investigation of availability, demand, targets, economic growth and development of RE 2017-2050: Case study in Indonesia. International Journal of Coal Science & Technology, 8, pp. 483–499. DOI:10.1007/s40789-020-00391-4
  21. Erdiwansyah, E., Gani, A. M.H.N., Mamat, R. & Sarjono, R.E. (2022). Policies and laws in the application of renewable energy Indonesia: A reviews. AIMS Energy, 10, pp. 23–44. DOI:10.3934/energy.2022002
  22. Erdiwansyah, E., Mahidin, H. H., Nasaruddin, S., Zaki, M. & Muhibbddin. (2021). A critical review of the integration of renewable energy sources with various technologies. Prot Control Mod Power Syst. 6:3. DOI:10.1186/s41601-021-00181-3
  23. Erdiwansyah, E., Mamat, R., Sani, M.S.M., Sudhakar, K., Kadarohman, A. & Sardjono, R.E. (2019a). An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Reports, 5, pp.467–479. DOI:10.1016/j.egyr.2019.04.009
  24. Erdiwansyah,E., Mamat, R., Sani, M.S.M. & Sudhakar, K. (2019b). Renewable energy in Southeast Asia: Policies and recommendations. Sci Total Environ. DOI:10.1016/j.scitotenv.2019.03.273
  25. Ergal, İ., Fuchs, W., Hasibar, B., Thallinger, B., Bochmann, G. & Rittmann, S.K-M.R. (2018). The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv. 36, pp. 2165–2186. DOI:10.1016/j.biotechadv.2018.10.005
  26. Farina, A. & Anctil, A. (2022). Material consumption and environmental impact of wind turbines in the USA and globally. Resour Conserv Recycl. 176:105938. DOI:10.1016/j.resconrec.2021.105938
  27. Ferreira Mota, G., Germano de Sousa, I., Luiz Barros de Oliveira, A., Cavalcante, A.L.G., Moreira, K.S., Cavalcante, F.T.T., Erick da Silva Souza, J., Rafael de Aguiar Falcão, I., Rocha, T.G., Valério, R.B.R., Cristina Freitas de Carvalho, S., Neto, F.S., Serpa, J.F., Karolinny Chaves de Lima, R., Cristiane Martins de Souza, M. & José C.S. dos Santos. (2022). Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. Algal Res. 62:102616. DOI:10.1016/j.algal.2021.102616
  28. Gambelli, D., Alberti, F., Solfanelli, F., Vairo, D. & Zanoli, R. (2017). Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks. Energy Policy, 103, pp. 165–178. DOI:10.1016/j.enpol.2017.01.013
  29. Gaonkar, R.U. & Hegde, R.N. (2022). An investigation on the performance and viability of a hybrid twisted blade profile for a horizontal axis micro wind turbine. Mater Today Proc. 49, pp. 1200–1209. DOI:10.1016/j.matpr.2021.06.288
  30. Ge, S., Manigandan, S., Mathimani, T., Basha, S., Xia, C., Brindhadevi, K., Unpaprom, Y., Whangchai, K. & Pugazhendhi, A. (2022). An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics. Sci Total Environ. 813:152418
  31. Ge, S., Yek, P.N.Y., Cheng, Y.W., Xia, C., Mahari, W.A.W., Liew, R.K., Peng, W., Yuan, T.Q., Tabatabaei, M., Aghbashlo, M., Sonne, C. & Lam S.S. (2021). Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renew Sustain Energy Rev. 135:110148. DOI:10.1016/j.rser.2020.110148
  32. Ghosh, M., Ghosh, A. & Roy, A. (2020). Renewable and Sustainable Materials in Automotive Industry. [In:] Hashmi, S., Choudhury IABT-E of R and SM (eds). Elsevier, Oxford, pp. 162–179
  33. Glivin, G., Edwin, M. & Sekhar, S.J. (2018). Techno‐economic studies on the influences of nonuniform feeding in the biogas plants of educational institutions. Environ Prog Sustain Energy, 37, pp. 2156–2164
  34. Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P.C. & Sekhar, J. (2021a). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302:121153. DOI:10.1016/j.fuel.2021.121153
  35. Glivin, G. & Sekhar, J. (2020a). Simulation of anaerobic digesters for the non-uniform loading of biowaste generated from an educational institution. Lat Am Appl Res Int J. 50, pp. 33–40.
  36. Glivin, G. & Sekhar, S.J. (2020b). Waste potential, barriers and economic benefits of implementing different models of biogas plants in a few Indian educational institutions. BioEnergy Res. 13, pp. 668–682.
  37. Glivin, G., Vairavan, M., Manickam, P. & Santhappan, J.S. (2021b). Techno Economic Studies on the Effective Utilization of Non-Uniform Biowaste Generation for Biogas Production. Anaerob Dig Built Environ. 81.
  38. Goh, Y., Yap, S.P. & Tong, T.Y. (2020). Bamboo: The Emerging Renewable Material for Sustainable Construction. [In:] Hashmi S, Choudhury IABT-E of R and SM (eds). Elsevier, Oxford, pp. 365–376
  39. Guo, T., Guo, X., Gao, Z., Li, S., Zheng, X., Gao, X., Li, R., Wang, T., Li, Y. & Li, D. (2021). Nacelle and tower effect on a stand-alone wind turbine energy output—A discussion on field measurements of a small wind turbine. Appl Energy, 303:117590. DOI:10.1016/j.apenergy.2021.117590
  40. Gururani, P., Bhatnagar, P., Bisht, B., Jaiswal, K.K., Kumar, V., Kumar, S., Vlaskin, M.S., Grigorenko, A.V. & Rindin, K.G. (2022). Recent advances and viability in sustainable thermochemical conversion of sludge to bio-fuel production. Fuel, 316:123351. DOI:10.1016/j.fuel.2022.123351
  41. GWEC (2021). GWEC forecasts 817 GW of wind power in 2021. https://gwec.net/gwec-forecasts-817-gw-of-wind-power-in-2021/#:~:text=The global cumulative installed wind,153.5 GW in 2017-2021.
  42. Heffron, R.J., Körner, M-F., Sumarno, T., Wagner, J., Weibelzahl, M. & Fridgen, G. (2022). How different electricity pricing systems affect the energy trilemma: Assessing Indonesia’s electricity market transition. Energy Econ, 107:105663. DOI:10.1016/j.eneco.2021.105663
  43. Hien, P.D. (2019) Excessive electricity intensity of Vietnam: Evidence from a comparative study of Asia-Pacific countries. Energy Policy, 130, pp. 409–417. DOI:10.1016/j.enpol.2019.04.025
  44. Indonesia C (2021) RI Targets Renewable Energy to Reach 50% by 2050
  45. International Energy Agency IEA, Bank W (2014) Sustainable Energy for All 2013-2014: Global Tracking Framework Report. The World Bank
  46. Jurasz, J. & Mikulik, J. (2017) Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective. Bull. Polish Acad. Sci. Tech. Sci. 65, pp. 859–869
  47. Kalinichenko, A. & Havrysh, V. (2019). Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway. Arch Environ Prot. 45, pp. 68–83. DOI:10.24425/aep.2019.126423
  48. Kandasamy, S., Bhuvanendran, N., Narayanan, M. & He, Z. (2022). Chapter 13 - Thermochemical conversion of algal biomass. [In:] El-Sheekh, M., Abomohra AE-FBT-H of AB (eds). Elsevier, pp. 281–302
  49. Kandasamy, S., Devarayan, K., Bhuvanendran, N., Zhang, B., He, Z., Narayanan, M., Mathimani, T., Ravichandran, S. & Pugazhendhi, A. (2021). Accelerating the production of bio-oil from hydrothermal liquefaction of microalgae via recycled biochar-supported catalysts. J Environ Chem Eng. 9:105321. DOI:10.1016/j.jece.2021.105321
  50. Karpagam, R., Jawaharraj, K. & Gnanam, R. (2021). Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: a cascade approach for sustainable bioenergy. Sci Total Environ. 766:144236. DOI:10.1016/j.scitotenv.2020.144236
  51. Kim, B., Heo, H.Y., Son, J., Yang, J., Chang, Y.K., Lee, J.H. & Lee, J.W. (2019). Simplifying biodiesel production from microalgae via wet in situ transesterification: A review in current research and future prospects. Algal Res. 41:101557. DOI:10.1016/j.algal.2019.101557
  52. Klaimi, R., Alnouri, S.Y. & Stijepović, M. (2021). Design and thermo-economic evaluation of an integrated concentrated solar power – Desalination tri-generation system. Energy Convers Manag. 249:114865. DOI:10.1016/j.enconman.2021.114865
  53. Kulyal, L. & Jalal, P. (2022). Bioenergy, a finer alternative for India: Scope, barriers, socio-economic benefits and identified solution. Bioresour Technol Reports, 17:100947. DOI:10.1016/j.biteb.2022.100947
  54. Kumar, G., Cho, S-K., Sivagurunathan, P., Anburajan, P., Mahapatra, D.M., Park, J.H., Pugazhendhi, A. (2018) Insights into evolutionary trends in molecular biology tools in microbial screening for biohydrogen production through dark fermentation. Int J Hydrogen Energy, 43: pp. 19885–19901. DOI:10.1016/j.ijhydene.2018.09.040
  55. Kumar, G., Mathimani, T., Sivaramakrishnan, R., Shanmugam, S., Bhatia, S.K., Pugazhendhi, A. (2020). Application of molecular techniques in biohydrogen production as a clean fuel. Sci Total Environ. 722:137795. DOI:10.1016/j.scitotenv.2020.137795
  56. Kumar Sharma, A., Kumar Ghodke, P., Manna, S. & Chen, W-H. (2021). Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. Bioresour Technol. 342:126057. DOI:10.1016/j.biortech.2021.126057
  57. Lagdani, O., Tarfaoui, M., Nachtane, M., Trihi, M. & Laaouidi, H. (2021). Modal analysis of an iced offshore composite wind turbine blade. Wind Eng. 0309524X211011685
  58. Lin, C-Y. & Lu, C. (2021). Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review. Renew Sustain Energy Rev. 136:110445. DOI:10.1016/j.rser.2020.110445
  59. Liu, H., Li, Y., Duan, Z. & Chen, C. (2020). A review on multi-objective optimization framework in wind energy forecasting techniques and applications. Energy Convers Manag. 224:113324. DOI:10.1016/j.enconman.2020.113324
  60. Malik, P., Awasthi, M. & Sinha, S. (2022). A techno-economic investigation of grid integrated hybrid renewable energy systems. Sustain Energy Technol Assessments, 51:101976. DOI:10.1016/j.seta.2022.101976
  61. Mathimani, T. & Mallick, N. (2019). A review on the hydrothermal processing of microalgal biomass to bio-oil - Knowledge gaps and recent advances. J Clean Prod. 217, pp. 69–84. DOI:10.1016/j.jclepro.2019.01.129
  62. Mathimani, T., Sekar, M., Shanmugam, S., Sabir, J.S.M., Chi, N.T.L. & Pugazhendhi, A. (2021). Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield. Sci Total Environ. 771:144700. DOI:10.1016/j.scitotenv.2020.144700
  63. Micallef, D. & Rezaeiha, A. (2021). Floating offshore wind turbine aerodynamics: Trends and future challenges. Renew Sustain Energy Rev. 152:111696. DOI:10.1016/j.rser.2021.111696
  64. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019) Ammonia emission from livestock productionin Poland and its regional diversity in the years 2005–2017. Arch Environ Prot. 45, pp. 114–121. DOI:10.24425/aep.2019.130247
  65. Mori, A. (2021) 2 Struggles for energy transition in the electricity system in Asian countries. China’s Carbon-Energy Policy Asia’s Energy Transit Carbon Leakage, Relocat Halos 23
  66. Moshood, T.D., Nawanir, G. & Mahmud, F. (2021). Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ Challenges, 5:100207. DOI:10.1016/j.envc.2021.100207
  67. Musharavati, F., Khanmohammadi, S. & Pakseresht, A. (2021). A novel multi-generation energy system based on geothermal energy source: Thermo-economic evaluation and optimization. Energy Convers Manag. 230:113829. DOI:10.1016/j.enconman.2021.113829
  68. Narwane, V.S., Yadav, V.S., Raut, R.D., Narkhede, B.E. & Gardas, B.B. (2021). Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach. Renew Energy 164, pp. 298–309. DOI:10.1016/j.renene.2020.09.077
  69. Neupane, D., Kafle, S., Karki, K.R., Kim, D.H. & Pradhan, P. (2022). Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis. Renew Energy, 181, pp. 278–291. DOI:10.1016/j.renene.2021.09.027
  70. Oliveira, C.Y.B., D’Alessandro, E.B., Antoniosi Filho, N.R., Lopes, R.G. & Derner, R.B. (2021). Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. Sci Total Environ. 759:143476. DOI:10.1016/j.scitotenv.2020.143476
  71. Olsztyńska, I. (2019). Biomass in the fuel mix of the Polish energy and heating sector. Polityka Energ - Energy Policy J. 22, pp. 99–118
  72. Ong, E.S., Rabbani, A.H., Habashy, M.M., Abdeldayem, O.M., Al-Sakkari, E.G. & Rene, E.R. (2021). Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review. Environ Pollut. 291:118160. DOI:10.1016/j.envpol.2021.118160
  73. Openshaw, K. (2010). Biomass energy: Employment generation and its contribution to poverty alleviation. Biomass and Bioenergy, 34, pp. 365–378. DOI:10.1016/j.biombioe.2009.11.008
  74. Ortolani, A., Persico, G., Drofelnik, J., Jackson, A. & Campobasso, M.S. (2020). Cross-comparative analysis of loads and power of pitching floating offshore wind turbine rotors using frequency-domain Navier-Stokes CFD and blade element momentum theory. Journal of Physics: Conference Series. IOP Publishing, p 52016
  75. Outlook IIET. (2021). Tracking Progress of Energy Transition in Indonesia. Jakarta Inst Essent Serv Reform
  76. Pichika, S.V.V.S.N., Yadav, R., Geetha Rajasekharan, S., Praveen, H.M. & Inturi, V. (2022). Optimal sensor placement for identifying multi-component failures in a wind turbine gearbox using integrated condition monitoring scheme. Appl Acoust. 187:108505. DOI:10.1016/j.apacoust.2021.108505
  77. Pitchia Krishnan, B., Mathanbabu, M., Sathyamoorthy, G., Gokulnath, K. & Kumar, L.G.S. (2021). Performance estimation and redesign of horizontal axis wind turbine (HAWT) blade. Mater Today Proc. 46, pp. 8025–8031. DOI:10.1016/j.matpr.2021.02.777
  78. Pourrajabian, A., Dehghan, M. & Rahgozar, S. (2021). Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: A continuous approach or a binary one? Sustain Energy Technol Assessments, 44:101022. DOI:10.1016/j.seta.2021.101022
  79. Reilly, L.A. (2020). Exploration of Model-Resolution Dependence of Forecasted Wind Hazards for Small Unmanned Aircraft System Operations. The University of North Dakota ProQuest Dissertations Publishing,   2020. 28085974.
  80. Saha, R., Bhattacharya, D. & Mukhopadhyay, M. (2022). Enhanced production of biohydrogen from lignocellulosic feedstocks using microorganisms: A comprehensive review. Energy Convers Manag. X 13:100153. DOI:10.1016/j.ecmx.2021.100153
  81. Sameeroddin, M., Deshmukh, M.K.G., Viswa, G. & Sattar, M.A. (2021). Renewable energy: Fuel from biomass, production of ethanol from various sustainable sources by fermentation process. Mater Today Proc. DOI:10.1016/j.matpr.2021.01.746
  82. Sangeetha, T., Rajneesh, C.P. & Yan, W-M. (2020). 15 - Integration of microbial electrolysis cells with anaerobic digestion to treat beer industry wastewater. [In:] Abbassi, R., Yadav, A.K., Khan, F. & Garaniya, VBT-IMFC for WT (eds). Butterworth-Heinemann, pp. 313–346
  83. Saravanan, A.P., Pugazhendhi, A. & Mathimani, T. (2020). A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps. Fuel 272:117635. DOI:10.1016/j.fuel.2020.117635
  84. Sellevold, E., May, T., Gangi, S., Kulakowski, J., McDonnell, I., Hill, D. & Grabowski, M. (2020). Asset tracking, condition visibility and sustainability using unmanned aerial systems in global logistics. Transp Res Interdiscip Perspect. 8:100234. DOI:10.1016/j.trip.2020.100234
  85. Shakya, S. (2020). Performance analysis of wind turbine monitoring mechanism using integrated classification and optimization techniques. J Artif Intell. 2, pp. 31–41.
  86. Shanmugam, S., Mathimani, T., Rene, E.R., Geo, V.E., Arun, A., Brindhadevi, K. & Pugazhendhi, A. (2021a). Biohythane production from organic waste: Recent advancements, technical bottlenecks and prospects. Int J Hydrogen Energy, 46, pp. 11201–11216. DOI:10.1016/j.ijhydene.2020.10.132
  87. Shanmugam, S., Sekar, M., Sivaramakrishnan, R., Raj, T., Ong, E.S., Rabbani, A.H., Rene, E.R., Mathimani, T., Brindhadevi, K. & Pugazhendhi, A. (2021b). Pretreatment of second and third generation feedstock for enhanced biohythane production: Challenges, recent trends and perspectives. Int J Hydrogen Energy, 46, pp. 11252–11268. DOI:10.1016/j.ijhydene.2020.12.083
  88. Sharma, M., Singh, J., Baskar, C. & Kumar, A. (2019). A comprehensive review of renewable energy production from biomass-derived bio-oil. Biotechnol J Biotechnol Comput Biol Bionanotechnol, 100:
  89. Sheng, Y., Mathimani, T., Brindhadevi, K., Basha, S., Elfasakhany, A., Xia, C. & Pugazhendhi, A. (2022). Combined effect of CO2 concentration and low-cost urea repletion/starvation in Chlorella vulgaris for ameliorating growth metrics, total and non-polar lipid accumulation and fatty acid composition. Sci Total Environ, 808:151969. DOI:10.1016/j.scitotenv.2021.151969
  90. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Arch Environ Prot. 45, pp. 126–135. DOI:10.24425/aep.2019.126427
  91. Solomin, E. V., Terekhin, A.A., Martyanov, A.S., Shishkov, A.N., Kovalyov, A.A., Ismagilov, D.R. & Ryavkin, G.N. (2022). Horizontal axis wind turbine yaw differential error reduction approach. Energy Convers Manag. 254:115255. DOI:10.1016/j.enconman.2022.115255
  92. Srivastava, R.K., Shetti, N.P., Reddy, K.R., Kwon, E.E., Nadagouda, M.N. & Aminabhavi, T.M. (2021) Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollut. 276:116731. DOI:10.1016/j.envpol.2021.116731
  93. Sudhakar, M.P., Kumar, B.R., Mathimani, T. & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod. 228, pp. 1320–1333. DOI:10.1016/j.jclepro.2019.04.287
  94. Sutherland, D.L., McCauley, J., Labeeuw, L., Ray, P., Kuzhiumparambil, U., Hall, C., Doblin, M. & Nguyen, L.N. (2021). How microalgal biotechnology can assist with the UN Sustainable Development Goals for natural resource management. Curr Res Environ Sustain. 3:100050. DOI:10.1016/j.crsust.2021.100050
  95. Ta, D-T., Lin, C-Y., Ta, T-M-N. & Chu, C-Y. (2020). Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Bioresour Techno.l 317:123986. DOI:10.1016/j.biortech.2020.123986
  96. Tarique, J., Sapuan, S.M., Khalina, A., Sherwani, S.F.K., Yusuf, J. & Ilyas, R.A. (2021). Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. J Mater Res Technol. 13, pp. 1191–1219. DOI:10.1016/j.jmrt.2021.05.047
  97. Thanarasu, A., Periyasamy, K. & Subramanian, S. (2022). An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. Chemosphere, 287:131886. DOI:10.1016/j.chemosphere.2021.131886
  98. Thanigaivel, S., Priya, A.K., Dutta, K., Rajendran, S. & Vasseghian, Y. (2022) Engineering strategies and opportunities of next generation biofuel from microalgae: A perspective review on the potential bioenergy feedstock. Fuel, 312:122827. DOI:10.1016/j.fuel.2021.122827
  99. Tuan Hoang, A. & Viet Pham, V. (2021). 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew Sustain Energy Rev. 148:111265. DOI:10.1016/j.rser.2021.111265
  100. Update AM (2017) Global wind report. Glob Wind Energy Council.
  101. Velusamy, K., Devanand, J., Senthil Kumar, P., Soundarajan, K., Sivasubramanian, V., Sindhu, J. & Vo, D.V.N. (2021). A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel, 306:121632. DOI:10.1016/j.fuel.2021.121632
  102. Wang, L., Liu, X. & Kolios, A. (2016). State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling. Renew Sustain Energy Rev. 64, pp. 195–210. DOI:10.1016/j.rser.2016.06.007
  103. Whangchai, K., Mathimani, T., Sekar, M., Shanmugam, S., Brindhadevi, K., Hung, T.V., Chinnathambi, A., Alharbi, S.A. & Pugazhendhi, A. (2021). Synergistic supplementation of organic carbon substrates for upgrading neutral lipids and fatty acids contents in microalga. J Environ Chem Eng. 9:105482. DOI:10.1016/j.jece.2021.105482
  104. Wicker, R.J., Kumar, G., Khan, E. & Bhatnagar, A. (2021). Emergent green technologies for cost-effective valorization of microalgal biomass to renewable fuel products under a biorefinery scheme. Chem Eng J. 415:128932. DOI:10.1016/j.cej.2021.128932
  105. Wijayasekera, S.C., Hewage, K., Siddiqui, O., Hettiaratchi, P. & Sadiq, R. (2022). Waste-to-hydrogen technologies: A critical review of techno-economic and socio-environmental sustainability. Int J Hydrogen Energy, 47, pp. 5842–5870. DOI:10.1016/j.ijhydene.2021.11.226
  106. Wójcik, M. & Stachowicz, F. (2019). Influence of sewage sludge conditioning with use of biomass ash on its rheological characteristics. Arch Environ Prot. 45, pp. 92–102. DOI:10.24425/aep.2019.126425
  107. Wu, L., Wei, W., Song, L., Woźniak-Karczewska, M., Chrzanowski, L. & Ni, B.J. (2021). Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas. Renew Sustain Energy Rev. 150:111448. DOI:10.1016/j.rser.2021.111448
  108. Xu, L., Zhang, Q. & Shi, X. (2019). Stakeholders strategies in poverty alleviation and clean energy access: A case study of China’s PV poverty alleviation program. Energy Policy, 135:111011. DOI:10.1016/j.enpol.2019.111011
  109. Yin, Z., Zhu, L., Li, S., Hu, T., Chu, R., Mo, F., Hu, D., Liu, C. & Li, Bin. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour Technol. 301:122804. DOI:10.1016/j.biortech.2020.122804
  110. Zhang, L., Wang, J., Niu, X. & Liu, Z. (2021). Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection. Appl Energy, 301:117449. DOI:10.1016/j.apenergy.2021.117449
  111. Zhao, S., Yao, L., He, H., Yiping, Z., Lei, H., Yujia, Z., Yajing, Y. & Jianli, J. (2019). Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag. Arch Environ Prot. 45, pp. 84–90. DOI:10.24425/aep.2019.127983
  112. Zheng, Y., Zhang, Q., Zhang, Z., Jing, Y., Hu, J., He, C. & Lu, C. (2021). A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. Bioresour Technol. 126595. DOI:10.1016/j.biortech.2021.126595
  113. Zhuang, X., Liu, J., Wang, C., Zhang, Q. & Ma, L. (2022). A review on the stepwise processes of hydrothermal liquefaction (HTL): Recovery of nitrogen sources and upgrading of biocrude. Fuel, 313:122671. DOI:10.1016/j.fuel.2021.122671
Go to article

Authors and Affiliations

E. Erdiwansyah
ORCID: ORCID
Asri Gani
1 5
ORCID: ORCID
Rizalman Mamat
2
M. Mahidin
ORCID: ORCID
K. Sudhakar
3
ORCID: ORCID
S.M. Rosdi
4
Husni Husin
1
ORCID: ORCID

  1. Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  2. College of Engineering, Universiti Malaysia Pahang, Pahang, Malaysia
  3. Energy Centre, Maulana Azad National Institute of Technology, Bhopal, India
  4. Politeknik Sultan Mizan Zainal Abidin, Terengganu
  5. Research Center of Palm Oil and Coconut, Universitas Syiah Kuala, Indonesia

Abstract

The Polish Wind Energy Association (PWEA) is Poland’s largest organization promoting alternative energy sources, mainly onshore and offshore wind power. It is actively involved in consultations on strategic documents and acts of legislation related to the market of renewable energy sources, alternative fuels, and the energy transition. By working together with decision-makers at the EU, national, and local government levels, it aligns various interests to promote Poland’s sustainable development. It organizes events bringing together representatives of the sector and decision-makers, including the annual PWEA Conference – the largest such event in Central and Eastern Europe ( http://konferencjapsew.pl/en/) devoted to prospects for the development of onshore and offshore wind energy in Poland. The Association initiated the establishment of the RE-Source Poland Hub Foundation ( http://resourcepoland.pl/en/), which shows businesses how they can become part of the trend towards the green transition and sustainable development. It promotes pro-environmental attitudes and knowledge of the environmental, economic, and social benefits of wind energy in the media, on social media (such as https://www.facebook.com/psew.pwea and https://twitter.com/PSEW_PWEA), and during the “Summer with the Wind” family summer picnics (Lato z wiatrem) held at the Baltic Sea.
Go to article
Download PDF Download RIS Download Bibtex

Abstract

This paper reports a new strand wire winding method in a solenoidal coil with limited geometry that enables good impedance matching. In the proposed method strand wires are wound layer-by-layer on top of each other allowing one to set equivalent inductance and resistance of the coil to desired values while obtaining dense magnetic flux and high current carrying capacity. As a proof-of-concept demonstration, simple model setups were constructed with solenoidal coils composed of copper wire strands wound according to the proposed method, and a plastic pipe. The measurements were repeated with a metal shell placed inside the coil to model a complete heating system. System inductance and resistance were measured at two different frequencies. The results show that with the new winding method it is possible to increase a coil’s turn number and the number of strand layers composed by the coil. Also, adding and removing strand layers in the proposed coil architectures enable inductance and resistance values to decrease and increase, respectively, in a controlled way. To understand changes of system parameters, simulations were also performed. The calculated inductance and resistance values in the simulations agree well with the measurement results and magnetic flux distribution created in the system demonstrates the changes.
Go to article

Authors and Affiliations

Veli Tayfun Kilic
1

  1. Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Turkiye
Download PDF Download RIS Download Bibtex

Abstract

Traps to catch microfauna transported by wind were installed on already colonised by plants area, in the vicinity of the glacier. After 6-week-exposition 859 individuals of microfauna were caught, of which Nematoda constituted 71%, Tardigrada 22% and Rotifcra 7%. Number of microfauna individuals caught depended on distance from the already colonised areas and presence of plant parts, together with which animals can be transported more easily. Microfauna connected with vegetation, which is transferred together with plant parts, was transported in higher numbers. Probably these taxa (i.e. Diphascon within tardigrades and Dorylaimidae within nematodes) colonise new habitats at first, but other species dominate later in freshwater bodies.

Go to article

Authors and Affiliations

Katarzyna Janiec
Download PDF Download RIS Download Bibtex

Abstract

Based on the test and observation of the desert hinterland wind field, combined with the numerical simulation of Fluent wind-sand two-phase flow, the sand resistance performances of comprehensive protection in the desert hinterland under strong wind environment are researched. The transient wind speed and wind direction around the comprehensive protection facility are measured by two 3D ultrasonic anemometers on the highway in the desert hinterland, and the initial wind speed of the sand flow is provided for the numerical simulation boundary. The sedimentary sand particles around the comprehensive protection facility are collected for particle size analysis, and the particle size distributions of sedimentary sand particles at different locations are obtained. Numerical models of high vertical sand barriers, grass checkered sand barriers and roadbeds are established by Fluent, the wind-sand flow structures around the comprehensive protection facilities and desert hinterland highway under the strong wind environment are obtained, and the influence laws of the comprehensive protection facilities on the movement of wind-sand flow and sand deposition characteristics are obtained. The study found that the comprehensive protection facilities disturbed the wind and sand flow, and there are significant airflow partitions around the comprehensive protection facilities. The wind speed decreases rapidly after the wind-sand flows through the high vertical sand barrier; the wind-sand flow rises at the end of the high vertical sand barrier. When the wind-sand flow moves around the grass checkered sand barrier, the wind speed has dropped to the range of 0–3 m/s, and the wind speed near the ground by the grass checkered sand barrier is further reduced. Due to the existence of the concave surface of the grass grid, there are small vortices inside the grass grid sand barrier. Large sand particles are mainly deposited on the windward side and inside of high vertical sand barriers. The grass checkered sand barrier forms a stable concave surface to generate backflow, which can ensure that the sand surface does not sand itself in a strong wind environment, and can also make a small amount of sand carried in the airflow accumulate around the groove of the grass checkered sand barrier. The numerical simulation results are consistent with the measured results, and the comprehensive protection measures have achieved good sand control effects.
Go to article

Authors and Affiliations

Wenhua Yin
1 2
ORCID: ORCID
Xu Wang
3
ORCID: ORCID
Yongxiang Wu
2
ORCID: ORCID
Fang Wang
2
ORCID: ORCID

  1. Lanzhou Jiaotong University, Civil Engineering College, Nanzhou, 353000, China
  2. Ningxia Highway Survey and Design Insitute Co., Ltd, Yinchuan, 750001, China
  3. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the possibilities for developing a pole-changing winding with a pole ratio of 3:4 with improved electromagnetic properties. Such a winding can be used in two-speed induction motors for turbo mechanisms. The scheme of the new winding was obtained by using a discretely-specified spatial function method developed at the Tashkent State Technical University. A comparison of the parameters obtained for a similar winding received by the pole amplitude modulation method has been presented. Design of a new motor with a new winding is developed based on the standard induction motor. The paper presents results of laboratory tests, too.
Go to article

Authors and Affiliations

Makhsud Bobojanov
1
ORCID: ORCID

  1. Tashkent State Technical University, 2 University str., 100095, Uzbekistan
Download PDF Download RIS Download Bibtex

Abstract

Increasing the share of energy production from renewable sources (RES) plays a key role in the sustainable and more competitive development of the energy sector. Among the renewable energy sources, the greatest increase can be observed in the case of solar and wind power generation. It should be noted that RES are an increasingly important elements of the power systems and that their share in energy production will continue to rise. On the other hand the development of variable generation sources (wind and solar energy) poses a serious challenge for power systems as operators of unconventional power plants are unable to provide information about the forecasted production level and the energy generated in a given period is sometimes higher than the demand for energy in all of the power systems. Therefore, with the development of RES, a considerable amount of the generated energy is wasted. The solution is energy storage, which makes it possible to improve the management of power systems. The objective of this article is to present the concept of electricity storage in the form of the chemical energy of hydrogen (Power to Gas) in order to improve the functioning of the power system in Poland. The expected growth in the installed capacity of wind power plants will result in more periods in which excess energy will be produced. In order to avoid wasting large amounts of energy, the introduction of storage systems is necessary. An analysis of the development of wind power plants demonstrates that the Power to Gas concept can be developed in Poland, as indicated by the estimated installed capacity and the potential amount of energy to be generated. In view of the above, the excess electricity will be available for storage in the form of chemical energy of hydrogen, which

Go to article

Authors and Affiliations

Aleksandra Komorowska
ORCID: ORCID
Lidia Gawlik
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Amplitude modulation increases the annoyance caused by wind turbine noise. One gets the improved annoyance when a penalty is added to the measured or calculated time-average sound level. The amplitude modulated wind turbine noise consists of pulses. Each of them could be characterized by the short timeaverage sound level and the modulation depth. The latter determines the pulse penalty. This paper shows how to calculate the improved annoyance of amplitude modulated wind turbine noise, when the short time-average sound level and the penalty for each pulse are known. A special case of identical pulses is discussed. The proposed methodology needs to be tested by research.
Go to article

Authors and Affiliations

Rufin Makarewicz
1

  1. Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Amplitude modulated noise from a single wind turbine is considered. The time-varying modulation depth D_m and the short time-average sound level L_Aeq,τ (with τ = 20 s) are measured at the reference distance d_*. Due to amplitude modulation, a penalty has to be added to L_Aeq,τ. The paper shows how to calculate the corrected long-term time-average sound level L ̂_AeqT (with T >> 20 s), which accounts for amplitude modulation, at any distance d ≠ d_* from the wind turbine. The proposed methodology needs to be tested by research
Go to article

Authors and Affiliations

Rufin Makarewicz
1
Maciej Buszkiewicz
1

  1. Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Obervations of wind directions and air temperatures in Hornsund, Spitsbergen, in 1978—1985 were used to compute frequency distribution of wind directions and mean air temperatures at particular wind directions. Prevailing easterly winds (60°, 90° and 120°) resulted in lower air temperatures (to —2.2°C) than winter and spring means and in higher (nearly 1°C) than summer and autumn mean temperatures. Greatest positive deviations from mean seasonal temperatures are observed in winter at southerly and southwesterly winds and reach 10°C. Greatest negative deviations from mean seasonal temperatures are noted at northerly winds (330° and 360°) in autumn and reach —3.7°C.

Go to article

Authors and Affiliations

Danuta Wielbińska
Ewa Skrzypczak
Download PDF Download RIS Download Bibtex

Abstract

Offshore wind power is a relatively new sector of the economy with a tremendous potential for development. Its main advantage is foreseeable production and a high capacity factor, estimated at 50% (with prospects to increase to 60%), which makes it the most efficient energy source of all renewable energy technologies. In the Baltic Sea Region, Poland has the largest potential for the development of offshore wind energy. This has been reflected in plans by investors interested in offshore investments within the Polish marine areas. European energy and climate strategies, which define principles and objectives for the transformation of the European energy sector in line with the principle of sustainable development, underline the importance of offshore wind in the effort to achieve climate neutrality of the EU economy and contribute to energy security in Europe. Decision-makers in Poland endeavor to create conditions favorable to the development of the offshore wind sector. The article presents European and Polish conditions for the development of the offshore wind energy. To assess threats and opportunities for the development of the technology in Poland, the article examines whether the offshore wind potential has been included in strategic policy papers related to the development of the Polish energy sector, as well as how the state intends to support the development of the technology. A particular emphasis has been put on the latest draft of the Energy Policy of Poland until 2040 due to the crucial role of the document, since it sets directions for the development of the Polish energy sector for the next 20 years.

Go to article

Authors and Affiliations

Wojciech Drożdż
Oliwia Joanna Mróz-Malik
Download PDF Download RIS Download Bibtex

Abstract

The grid integration of large-scale wind power will alter the dynamic characteristics of the original system and the power distribution among synchronous machines. Meanwhile, the interaction between wind turbines and synchronous machines will affect the damping oscillation characteristics of the system. The additional damping control of traditional synchronous generators provides an important means for wind turbines to enhance the damping characteristics of the system. To improve the low frequency oscillation characteristics of wind power grid-connected power systems, this paper adds a parallel virtual impedance link to the traditional damping controller and designs a DFIG-PSS-VI controller. In the designed controller, the turbine active power difference is chosen as the input signal based on residual analysis, and the output signal is fed back to the reactive power control loop to obtain the rotor voltage quadrature component. With DigSILENT/PowerFactory, the influence of the controller parameters is analyzed. In addition, based on different tie-line transmission powers, the impact of the controller on the low-frequency oscillation characteristics of the power system is examined through utilizing the characteristic root and time domain simulation analysis.
Go to article

Authors and Affiliations

Ping He
1
ORCID: ORCID
Yongliang Zhu
2
Qiuyan Li
3
Jiale Fan
1
Yukun Tao
1

  1. Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
  2. Zhengzhou University of Light Industry, College of Materials and Chemical Engineering, China
  3. State Grid Henan Electric Power Company, Economic and Technical Research Institute, China
Download PDF Download RIS Download Bibtex

Abstract

The concentrated winding (CW) is obviously different from the traditional distributed winding (DW) in the arrangement of windings and the calculation of winding factors, which will inevitably lead to different performances of the permanent magnet synchronous motor (PMSM). In order to analyze the differences between the CW and the DW in the performance, a 3 kW, 1500 r/min PMSM is taken as an example to establish a 2-D finite element model. The correctness of the model is verified by comparing experimental data and calculated data. Firstly, the finite element method (FEM) is used to calculate the electromagnetic field of the PMSM, and the performance parameters of the PMSM are obtained. On this basis, the influences of the two winding structures on the performance are quantitatively analyzed, and the differences between the two winding structures on the performance of the PMSM will be determined. Finally, the differences of efficiency between the two winding structures are obtained. In addition, the influences of the winding structures on eddy current loss are further studied, and the mechanism of eddy current loss is revealed by studying the eddy current density. The analysis of this paper provides reference and practical value for the optimization design of the PMSM.

Go to article

Authors and Affiliations

Hongbo Qiu
Yong Zhang
Cunxiang Yang
Ran Yi

This page uses 'cookies'. Learn more