Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An optimum route to fabricate the Ni-based superalloy with homogeneous dispersion of Y2O3 particles is investigated. Ni-based ODS powder was prepared by high-energy ball milling of gas-atomized alloy powders and Y2O3 particles treated with a high-pressure homogenizer. Decrease in particle size and improvement of dispersion stability were observed by high-pressure homogenization of as-received Y2O3 particles, presumably by the powerful cavitation forces and by collisions of the particles. Microstructural analysis for the ball-milled powder mixtures reveal that Ni-based ODS powders prepared from high-pressure homogenization of Y2O3 particles exhibited more fine and uniform distribution of Ni and Y elements compared to the as-received powder. These results suggested that high-pressure homogenization process is useful for producing Ni-based superalloy with homogeneously dispersed oxide particles.
Go to article

Bibliography

[1] T.M. Pollock, T. Sammy, J. Propul. Power 22, 361 (2006).
[2] W. Betteridge, S.W.K. Shaw, Mater. Sci. Technol. 3, 682 (1987).
[3] G . Quan, Y. Zhang, P. Zhang, Y. Mai, W. Wang, Trans. Nonferrous Met. Soc. China 31, 438 (2021).
[4] W. Sha, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 25, 705 (1994).
[5] G .W. Noh, Y.D. Kim, K.-A. Lee, H.-J. Kim, J. Korean Powder Metall. Inst. 27, 8 (2020).
[6] J.S. Benjamin, Metall. Trans. 1, 2943 (1970).
[7] S.K. Kang, R.C. Benn, Metall. Trans. A 16, 1285 (1985).
[8] Y.-I. Lee, E.S. Lee, S.-T. Oh, J. Nanosci. Nanotechnol. 21, 4955 (2021).
[9] J.H. Schneibel, S. Shim, Mater. Sci. Eng. A 488, 134 (2008).
[10] Q.X. Sun, T. Zhang, X.P. Wang, Q.F. Fang, T. Hao, C.S. Liu, J. Nucl. Mater. 424, 279 (2012).
[11] J. Kluge, G. Muhrer, M. Mazzotti, J. Supercrit. Fluids 66, 380 (2012).
[12] O . Mengual, G. Meunier, I. Cayré, K. Puech, P. Snabre, Talanta 50, 445 (1999).
[13] W.D. Pandolfe, J. Dispersion Sci. Technol. 2, 459 (1981).
[14] M. Luo, X. Qi, T. Ren, Y. Huang, A.A. Keller, H. Wang, B. Wu, H. Jin, F. Li, Colloids Surf. A 533, 9 (2017).
[15] C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).
Go to article

Authors and Affiliations

Jongmin Byun
1
ORCID: ORCID
Young-In Lee
1
ORCID: ORCID
Sung-Tag Oh
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering & The Institute of Powder Technology, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The nano-sized Y2O3 dispersed W composite powder is prepared by ultrasonic spray pyrolysis of a tungsten precursor using ammonium metatungstate hydrate and a polymer addition solution method using Y-nitrate. XRD analysis for calcined powder showed the formation of WO2 phase by partial oxidation of W powder during calcination in air. The TEM and phase analysis for further hydrogen reduction of calcined powder mixture exhibited that the W powder with a uniform distribution of Y2O3 nanoparticles can be successfully produced. These results indicate that the wet chemical method combined with spray pyrolysis and polymer solution is a promising way to synthesis the W-based composites with homogeneous dispersion of fine oxide particles.
Go to article

Bibliography

[1] W.D. Klopp, J. Less-Common Met. 42, 261 (1975).
[2] V. Philipps, J. Nucl. Mater. 415, S2 (2011).
[3] L. Veleva, Z. Oksiuta, U. Vogt, N. Baluc, Fusion Eng. Des. 84, 1920 (2009).
[4] Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu, J. Alloys Compd. 695, 2969 (2017).
[5] C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, S. Middlemas, Int. J. Refract. Met. Hard Mater. 75, 170 (2018).
[6] M.H. Nguyen, S.-J. Lee, W.M. Kriven, J. Mater. Res. 14, 3417 (1999).
[7] S. Yan, J. Yin, E. Zhou, J. Alloys Compd. 450, 417 (2008).
[8] T.R. Wilken, W.R. Morcom, C.A. Wert, J.B. Woodhouse, Met. Trans. B 7, 589 (1976).
[9] S.C. Cifuentes, M.A. Monge, P. Pérez, Corros. Sci. 57, 114 (2012).
Go to article

Authors and Affiliations

Hyeonhui Jo
1
Young-In Lee
1 2
ORCID: ORCID
Myung-Jin Suk
3
Young-Keun Jeong
4
ORCID: ORCID
Sung-Tag Oh
1 2
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
  2. Seoul National University of Science and Technology, The Institute of Powder Technology, Seoul 01811, Republic of Korea
  3. Kangwon National University, Department of Materials Science and Engineering, Samcheok 25913, Republic of Korea
  4. Pusan National University, Graduate School of Convergence Science, Busan 46241, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

An optimum route to synthesis the W-based composite powders with homogeneous dispersion of oxide nanoparticles was investigated. The La2O3 dispersed W powder was synthesized by ultrasonic spray pyrolysis using ammonium metatungstate hydrate and lanthanum nitrate. The dispersion of Y2O3 nanoparticles in W- La2O3 powder was carried out by a polymer addition solution method using yttrium nitrate. XPS and TEM analyses for the composite powder showed that the nano-sized La2O3 and Y2O3 particles were well distributed in W powder. This study suggests that the combination processing of ultrasonic spray pyrolysis and polymeric additive solution is a promising way to synthesis W-based composite powders.
Go to article

Authors and Affiliations

Youn Ji Heo
1 2
ORCID: ORCID
Eui Seon Lee
1
ORCID: ORCID
Jeong Hyun Kim
1
ORCID: ORCID
Young-In Lee
1 2
ORCID: ORCID
Young-Keun Jeong
3
ORCID: ORCID
Sung-Tag Oh
1 2
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
  2. Seoul National University of Science and Technology, The Institute of Powder Technology, Seoul 01811, Republic of Korea
  3. Pusan National University, Graduate School of Convergence Science, Busan 46241, Republic of Korea

This page uses 'cookies'. Learn more