Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Considering the low accuracy and low efficiency of the traditional calibration method for base strain sensitivity of accelerometers, a novel base strain sensitivity calibration system with steady harmonic excitation is proposed. The required cantilever beam for calibration is driven by an electromagnetic exciter to generate a base strain varying in a steady harmonic pattern. By applying a Wheatstone bridge circuit, the generated strain with low distortion can be measured. The measurement system with a compensation function can automatically calibrate the base strain sensitivity. The amplitude linearity and frequency response characteristics of the base strain sensitivity in two accelerometers are obtained experimentally, and the uncertainty in the results is 2% ( k = 2).
Go to article

Authors and Affiliations

Chuwei Ye
1

  1. The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Zhejiang University, 310027, Hangzhou, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a low-cost and smart measurement system to acquire and analyze mechanical motion parameters. The measurement system integrates several measuring nodes that include one or more triaxial accelerometers, a temperature sensor, a data acquisition unit and a wireless communication unit. Particular attention was dedicated to measurement system accuracy and compensation of measurement errors caused by power supply voltage variations, by temperature variations and by accelerometers’ misalignments. Mathematical relationships for error compensation were derived and software routines for measurement system configuration, data acquisition, data processing, and self-testing purposes were developed. The paper includes several simulation and experimental results obtained from an assembled prototype based on a crank-piston mechanism

Go to article

Authors and Affiliations

J.M. Dias Pereira
Vítor Viegas
Octavian Postolache
Pedro Silva Girão
Download PDF Download RIS Download Bibtex

Abstract

The study presents the finite element (FE) model update of the existing simple-spans steelconcrete composite bridge structure using a particle swarm optimisation (PSO) and genetic algorithm (GA) approaches. The Wireless Structural Testing System (STS-WiFi) of Bridge Diagnostic, Inc. from the USA, implemented various types of sensors including: LVDT displacement sensors, intelligent strain transducers, and accelerometers that the static and dynamic historical behaviors of the bridge structure have been recorded in the field testing. One part of all field data sets has been used to calibrate the cross-sectional stiffness properties of steel girders and material of steel beams and concrete deck in the structural members including 16 master and slave variables, and that the PSO and GA optimisation methods in the MATLAB software have been developed with the new innovative tools to interface with the analytical results of the FE model in the ANSYS APDL software automatically. The vibration analysis from the dynamic responses of the structure have been conducted to extract four natural frequencies from experimental data that have been compared with the numerical natural frequencies in the FE model of the bridge through the minimum objective function of percent error to be less than 10%. In order to identify the experimental mode shapes of the structure more accurately and reliably, the discrete-time state-space model using the subspace method (N4SID) and fast Fourier transform (FFT) in MATLAB software have been applied to determine the experimental natural frequencies in which were compared with the computed natural frequencies. The main goal of the innovative approach is to determine the representative FE model of the actual bridge in which it is applied to various truck load
configurations according to bridge design codes and standards. The improved methods in this document have been successfully applied to the Vietnamese steel-concrete composite bridge in which the load rating factors (RF) of the AASHTO design standards have been calculated to predict load limits, so the final updated FE model of the existing bridge is well rated with all RF values greater than 1.0. The presented approaches show great performance and the potential to implement them in industrial conditions.
Go to article

Authors and Affiliations

Duc Cong Nguyen
1
ORCID: ORCID
Marek Salamak
1
ORCID: ORCID
Andrzej Katunin
1
ORCID: ORCID
Michael Gerges
2
ORCID: ORCID
Mohamed Abdel-Maguid
3

  1. Silesian University of Technology, Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland
  2. University of Wolverhampton, Faculty of Science and Engineering, Alan Turing Building, Wulfruna Street, Wolverhampton, the United Kingdom
  3. Canterbury Christ Church University, Faculty of Science, Engineering and Social Sciences, the United Kingdom

This page uses 'cookies'. Learn more