Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Measurement data obtained from Weigh-in-Motion systems support protection of road pavements from the adverse phenomenon of vehicle overloading. For this protection to be effective, WIM systems must be accurate and obtain a certificate of metrological legalization. Unfortunately there is no legal standard for accuracy assessment of Weigh-in-Motion (WIM) systems. Due to the international range of road transport, it is necessary to standardize methods and criteria applied for assessing such systems’ accuracy. In our paper we present two methods of determining accuracy of WIM systems. Both are based on the population of weighing errors determined experimentally during system testing. The first method is called a reliability characteristic and was developed by the authors. The second method is based on determining boundaries of the tolerance interval for weighing errors. Properties of both methods were assessed on the basis of simulation studies as well as experimental results obtained from a 16-sensor WIM system.

Go to article

Authors and Affiliations

Piotr Burnos
Janusz Gajda
Ryszard Sroka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the problem of assessing the accuracy of reconstructing free-form surfaces in the CMM/CAD/CAM/CNC systems. The system structure comprises a coordinate measuring machine (CMM) PMM 12106 equipped with a contact scanning probe, a 3-axis Arrow 500 Vertical Machining Center, QUINDOS software and Catia software. For the purpose of surface digitalization, a radius correction algorithm was developed. The surface reconstructing errors for the presented system were assessed and analysed with respect to offset points. The accuracy assessment exhibit error values in the reconstruction of a free-form surface in a range of ± 0.02 mm, which, as it is shown by the analysis, result from a systematic error.

Go to article

Authors and Affiliations

Artur Wójcik
Magdalena Niemczewska-Wójcik
Jerzy Sładek
Download PDF Download RIS Download Bibtex

Abstract

Understanding the factors that influence the quality of unmanned aerial vehicle (UAV)-based products is

a scientifically ongoing and relevant topic. Our research focused on the impact of the interior orientation

parameters (IOPs) on the positional accuracy of points in a calibration field, identified and measured in an

orthophoto and a point cloud. We established a calibration field consisting of 20 materialized points and

10 detailed points measured with high accuracy. Surveying missions with a fixed-wing UAV were carried

out in three series. Several image blocks that differed in flight direction (along, across), flight altitude

(70 m, 120 m), and IOPs (known or unknown values in the image-block adjustment) were composed. The

analysis of the various scenarios indicated that fixed IOPs, computed from a good geometric composition,

can especially improve vertical accuracy in comparison with self-calibration; an image block composed

from two perpendicular flight directions can yield better results than an image block composed from a single

flight direction.

Go to article

Authors and Affiliations

Dejan Grigillo
Matija Uršič
Matej Bone
Tomaž Ambrožič
Polona Pavlovčič-Prešeren
Mojca Kosmatin-Fras
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the applicability of a novel method to determine horizontal curvature of the railway track axis based on results of mobile satellite measurements. The method is based on inclination angle changes of a moving chord in the Cartesian coordinate system. In the presented case, the variant referred to as the method of two virtual chords is applied. It consists in maneuvering with only one GNSS (Global Navigation Satellite System) receiver. The assumptions of the novel method are formulated, and an assessment of its application in the performed campaign of mobile satellite measurements is presented. The shape of the measured railway axis is shown in the national spatial reference system PL-2000, and the speed of the measuring trolley during measurement is calculated based on the recorded coordinates. It has been observed that over the test section, the curvature ordinates differ from the expected waveform, which can be caused by disturbances of the measuring trolley trajectory. However, this problem can easily be overcome by filtering the measured track axis ordinates to obtain the correct shape – this refers to all track segments: straight sections, circular arcs and transition curves. The virtual chord method can also constitute the basis for assessing the quality of the recorded satellite signal. The performed analysis has shown high accuracy of the measuring process.
Go to article

Bibliography

  1. British railway track design, construction and maintenance. 6th ed., The Permanent Way Institution, London, UK, 1993.
  2. 883.2000 DB_REF-Festpunktfeld, DB Netz AG, Berlin, Germany, 2016.
  3. Railway applications—Track—Track alignment design parameters—Track gauges 1435 mm and wider—Part 1: Plain line, EN 13803-1, CEN, Brussels, Belgium, 2010.
  4. Code of federal regulations title 49 transportation, US Government Printing Office, Washington, DC, USA, 2008.
  5. Standard: Railway Surveying, Version 1.0, T HR TR 13000 ST, NSW Government (Transport for NSW), Sydney, Australia, 2016.
  6. NR/L3/TRK/0030 NR_Reinstatement of Absolute Track Geometry (WCRL Routes), no. 1, NR, London, UK, 2008.
  7. Standardy Techniczne – Szczegółowe warunki techniczne dla modernizacji lub budowy linii kolejowych do predkości Vmax   200 km/h (dla taboru konwencjonalnego) / 250 km/h (dla taboru z wychylnym pudłem) – TOM I – DROGA SZYNOWA – Załącznik ST-T1_A6: Układy geometryczne torów, PKP Polskie Linie Kolejowe, Warszawa, 2018.
  8.  L. Wang et al., “Validation and assessment of multi-GNSS real-time Precise Point Positioning in simulated kinematic mode using IGS real-time service,” Remote. Sensing, vol. 10, pp. 1‒19, 2018, doi: 10.3390/rs10020337.
  9.  Y. Quan, and L. Lau, “Development of a trajectory constrained rotating arm rig for testing GNSS kinematic positioning,” Measurement, vol. 140, pp. 479–485, 2019, doi: 10.1016/j.measurement.2019.04.013.
  10.  R.M. Alkan, “Cm-level high accurate point positioning with satellite-based GNSS correction service in dynamic applications,” J. Spatial Sci., vol. 66, no. 2, pp. 351‒359, 2019, doi: 10.1080/14498596.2019.1643795.
  11.  W. Domski, and A. Mazur, “Input-output decoupling for a 3D free-floating satellite with a 3R manipulator with state and input disturbances,” Bull. Pol. Acad. Sci. Tech. Sci., vol.  67, no. 6, pp. 1031‒1039, 2019, doi: 10.24425/bpasts.2019.130885.
  12.  S. Wu et al., ”Improving ambiguity resolution success rate in the joint solution of GNSS-based attitude determination and relative positioning with multivariate constraints,” GPS Solutions, vol. 24, no. 1, article number: 31, 2020, doi: 10.1007/s10291-019-0943-y.
  13.  W. Koc and C. Specht, “Application of the Polish active GNSS geodetic network for surveying and design of the railroad,” in Proc. First International Conference on Road and Rail Infrastructure – CETRA 2010, Opatija, Croatia, Univ. of Zagreb, 2010, pp. 757‒762.
  14.  W. Koc and C. Specht, “Selected problems of determining the course of railway routes by use of GPS network solution,” Arch. Transp., vol. 23, no. 3, pp. 303‒320, 2011.
  15.  W. Koc, C. Specht, and P. Chrostowski, “Finding deformation of the straight rail track by GNSS measurements,” Annu. Navig., no. 19, part 1, pp. 91‒104, 2012, doi: 10.2478/v10367-012-0008-6.
  16.  W. Koc, C. Specht, P. Chrostowski, and J. Szmagliński, “Analysis of the possibilities in railways shape assessing using GNSS mobile measurements,” MATEC Web Conf., vol. 262, no. 4, p.  11004(1‒6), 2019, doi: 10.1051/matecconf/201926211004.
  17.  W. Koc, C. Specht, J. Szmagliński, and P. Chrostowski, “A method for determination and compensation of a cant influence in a track centerline identification using GNSS methods and inertial measurement,” Appl. Sci., vol. 9, no. 20, p.  4347(1‒16), 2019, doi: 10.3390/ app9204347.
  18.  C. Specht and W. Koc, “Mobile satellite measurements in designing and exploitation of rail roads,” Transp. Res. Procedia, vol. 14, pp. 625‒634, 2016, doi: 10.1016/j.trpro.2016.05.310.
  19.  C. Specht, W. Koc, P. Chrostowski, and J. Szmagliński, “The analysis of tram tracks geometric layout based on mobile satellite measurements,” Urban Rail Transit, vol. 3, no. 4, pp.  214‒226, 2017, doi: 10.1007/s40864-017-0071-3.
  20.  C. Specht, W. Koc, P. Chrostowski, and J. Szmagliński, “Accuracy assessment of mobile satellite measurements in relation to the geometrical layout of rail tracks,” Metrol. Meas. Syst., vol. 26, no. 2, pp. 309‒321, 2019, doi: 10.24425/mms.2019.128359.
  21.  P. Dąbrowski et al., “Installation of GNSS receivers on a mobile platform – methodology and measurement aspects,” Scientific Journals of the Maritime University of Szczecin, vol. 60, no.  132, pp. 18‒26, 2019, doi: 10.3390/jmse8010018.
  22.  A. Wilk et al., “Research project BRIK: development of an innovative method for determining the precise trajectory of a railway vehicle,” Transp. Oveview – Przegląd Komunikacyjny, vol. 74, no. 7, pp. 32‒47, 2019, doi: 10.35117/A_ENG_19_07_04.
  23.  L. Marx, “Satellitengestützte Gleisvermessung – auch beim Oberbau,” EI – Eisenbahningenieur, vol. 58, no. 6, pp. 9‒14, 2007.
  24.  Y. Naganuma, T. Yasukuni, and T. Uematsu, “Development of an inertial track geometry measuring trolley and utilization of its high- precision data,” Int. J. Transp. Dev. Integr., vol. 3, no. 3, pp. 271–285, 2019, doi: 10.2495/TDI-V3-N3-271-285.
  25.  C. Qijin et al., “A railway track geometry measuring trolley system based on aided INS,” Sensors, vol. 18, no. 2, p. 538, 2018, doi: 10.3390/ s18020538.
  26.  T. Strübing, “Kalibrierung und Auswertung von lasertriangulations-basierten Multisensorsystemen am Beispiel des Gleisvermessungs- systems RACER II,” Schriften des Instituts für Geodäsie der Universität der Bundeswehr München, Dissertationen, Heft 91, 2015.
  27.  T. Weinold and A. Grimm-Pitzinger, “Die Lagerung der Gleisvermessungen der ÖBB,” Vermessung & Geoinformation, vol. 7, no. 3, pp. 348–352, 2012.
  28. Rail design in Civil 3D, Autodesk, San Rafael, USA, 2019.
  29. An application for preliminary and detailed 3D design of rail infrastructure V8i PL, Bentley Systems, Exton, USA, 2019.
  30. BIM-ready railway design solution, CGS Labs, Ljubljana, Slovenia, 2018.
  31.  W. Koc, “The method of determining horizontal curvature in geometrical layouts of railway track with the use of moving chord,” Arch. Civil Eng., vol. 66, no. 4, pp. 579–591, 2020, doi: 10.24425/ace.2020.135238.
  32.  W. Koc, “Design of rail-track geometric systems by satellite measurement,” J. Transp. Eng., vol. 138, no. 1, pp. 114‒122, 2012, doi: 10.1061/(ASCE)TE.1943-5436.0000303.
  33.  A. Wilk, C. Specht, K. Karwowski et al., “Correction of determined coordinates of railway tracks in mobile satellite measurements,” Diagnostyka, vol. 21, no. 3, pp. 77‒85, 2020, doi: 10.29354/diag/125626.
  34.  A. Wilk et al., “Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle,” Measurement, vol. 175, p. 109016, 2021, doi: 10.1016/j. measurement.2021.109016.
  35.  A. Wilk, W. Koc, C. Specht, S. Judek et al., “Digital filtering of railway track coordinates in mobile multi–receiver GNSS measurements,” Sensors, vol. 20, p. 5018(1–20), 2020, doi: 10.3390/s20185018.
  36.  C. Specht et al., “Verification of GNSS measurements of the railway track using standard techniques for determining coordinates,” Remote Sensing, vol. 12, p. 2874(1‒24), 2020, doi: 10.3390/rs12182874.
Go to article

Authors and Affiliations

Władysław Koc
1
ORCID: ORCID
Andrzej Wilk
1
ORCID: ORCID
Cezary Specht
2
Krzysztof Karwowski
1
Jacek Skibicki
1
Krzysztof Czaplewski
2
Slawomir Judek
1
Piotr Chrostowski
3
Jacek Szmagliński
3
Paweł Dąbrowski
2
ORCID: ORCID
Mariusz Specht
2
Sławomir Grulkowski
3
Roksana Licow
3

  1. Gdańsk University of Technology, Faculty of Electrical and Control Engineering, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  2. Gdynia Maritime University, Faculty of Navigation, al. Jana Pawła II 3, 81-345 Gdynia, Poland
  3. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland

This page uses 'cookies'. Learn more