Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In two field experiments, the effect of some weed control treatments (citric acid at the rate of 10, 15 and 20%, acetic acid at the rate of 20, 30 and 40%, oxadiargyl, oxyflurfen, rice straw mulch, hand hoeing and an unweeded check control treatment) on weed growth and onion productivity in sandy soils at the Agricultural Experimental Station of the National Research Centre, Egypt was studied. The results indicated that all weeded treatments reduced the dry weight of broadleaf, grassy and total weeds as compared with the weedy check. Oxadiargyl, followed by two hand hoeing, rice straw mulch and acetic acid 40% recorded the greatest weed control efficiency. Insignificant differences were noticed between these treatments. Applying rice straw mulch increased bulb length, bulb diameter, bulb weight and onion yield by 67.52, 57.55, 45.74 and 66.22% over the weedy check, respectively. The highest values of N, P and K were obtained from rice straw mulch treatment followed by hand hoeing, oxadiargyl and acetic acid 40% treatments. It may be concluded that farmers can certainly depend on mulching or acetic acid at 40% instead of using chemical herbicides especially in organic farm systems for controlling onion weeds.

Go to article

Authors and Affiliations

Ibrahim El-Metwally
Shehata Shalaby
Download PDF Download RIS Download Bibtex

Abstract

During the research interaction of indole-3-acetic acid (IAA) and methyl jasmonate (JA-Me) in epinasty and/or hyponasty, as well as petiole growth of Bryophyllum calycinum were investigated. Exogenously applied IAA as a lanolin paste was extremely effective to induce epinasty and/or hyponasty accompanied with petiole elongation in intact B. calycinum. Application of IAA around or to the upper side of the petiole was much more effective than that to the lower side, suggesting that petiole epidermal cells on the adaxial side of B. calycinum are more sensitive and/or susceptive to IAA than those on the abaxial one. This is supported by the fact that not only the second curvature but also the first one in B. calycinum was enhanced by application of IAA to the upper side of the petiole. The degree of epinasty and/or hyponasty induced by IAA is strongly related to the increase of petiole growth. On the other hand, JA-Me significantly inhibited IAA-inducing epinasty and/or hyponasty, and petiole growth in intact B. calycinum. When detached leaves with petioles were placed leaf blade face down, clear petiole bending was observed. However, no petiole bending was found when detached leaves were placed leaf blade face up. Exogenously applied IAA to petioles was significantly effective to induce and/or stimulate petiole bending in placing detached leaves of B. calycinum face down but ethephon was not, suggesting that transport and/or movement of endogenous auxin produced in the leaf blade are necessary to induce petiole bending in detached leaves of B. calycinum and that ethylene derived from exogenously applied IAA does not play an important role in epinasty and/or hyponasty, and petiole bending in B. calycinum. The mechanisms of IAA-enhancing and JA-Me-inhibiting epinasty and/or hyponasty, and petiole growth are intensively discussed.
Go to article

Authors and Affiliations

Junichi Ueda
Justyna Góraj-Koniarska
Kensuke Miyamoto
Marian Saniewski
Download PDF Download RIS Download Bibtex

Abstract

Petiole bending in detached leaves of Bryophyllum calycinum was intensively investigated in relation to polar auxin transport in petioles. When detached leaves were placed leaf blade face down, clear petiole bending was observed. On the other hand, no petiole bending was found when detached leaves were placed leaf blade face up. Indole-3-acetic acid (IAA) exogenously applied to petioles was significantly effective to induce and/or stimulate petiole bending when detached leaves were placed leaf blade face down. To clarify the mechanisms of petiole bending in detached leaves of B. calycinum when they were placed leaf blade face down, the effects of application of IAA, ethephon which is an ethylene releasing compound, inhibitors of polar auxin transport such as 2,3,5-tiiodobenzoic acid (TIBA), N-1-naphthylphthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) and methyl jasmonate (JA-Me) were thoroughly investigated. Ethephon was not effective to enhance petiole bending, suggesting that ethylene derived from exogenously applied IAA does not play an important role in petiole bending in detachd leaves of B. calycinum. This suggestion was strongly supported by the fact that ethephon exogenously applied to petioles in intact plant of B. calycinum had no effect on inducing epinasty and/or hyponasty either (Ueda et al., 2018). Potent inhibitors of polar auxin transport, TIBA and HFCA, and JA-Me were extremely effective to inhibit petiole bending but NPA was not. Almost no petiole bending was observed in excised petiole segments without the leaf blade. Applicaton of IAA to the cut surface of petioles in the leaf blade side strongly promoted petiole bending. Polar auxin transport in excised petioles of B. calycinum was intensively investigated using radiolabeled IAA ([1-14C] IAA). Clear polar auxin transport was observed in excised petiole segments, indicating that auxin allows movement in one direction: from the leaf blade side to the stem side in petioles. When detached leaves were placed only leaf blade face down, transported 14C-IAA was reduced in the lower side of the excised petioles. These results strongly suggest that transport and/or lateral movement of endogenous auxin biosynthesized or produced in the leaf blade are necessary to induce petiole bending in detached leaves of B. calycinum. Mechanisms of petiole bending in detached leaves of B. calycinum are also discussed in relation to polar auxin transport and lateral movement of auxin.

Go to article

Authors and Affiliations

Junichi Ueda
Kensuke Miyamoto
Justyna Góraj-Koniarska
Marian Saniewski
Download PDF Download RIS Download Bibtex

Abstract

The effects of a microbial inoculant (Thervelics®: a mixture of cells of Bacillus subtilis C-3102 and carrier materials) on rice (Oryza sativa cv. Milkyprincess) and barley (Hordeum vulgare cv. Sachiho Golden) were evaluated in four pot experiments. In the first and second experiments, the dry matter production of rice and barley increased significantly by 10–20% with the inoculation of the mixture at a rate of 107 cfu ⋅ g–1 soil compared with the non-inoculated control. In the third experiment, the growth promoting effects of the mixture, the autoclaved mixture and the carrier materials were compared. The dry mater production of rice grains was the highest in the mixture, and it was significantly higher in the three treatments than in the control, suggesting that the carrier materials may also have a plant growth promoting effect and the living cells might have an additional stimulatory effect. To confirm the efficacy of the living cells in the mixture, only B. subtilis C-3102 cells were used in the fourth experiment. In addition, to estimate the mechanisms in growth promotion by B. subtilis C-3102, three B. subtilis strains with similar or different properties in the production of indole-3-acetic acid (IAA), protease and siderophore and phosphatesolubilizing ability were used as reference strains. Only B. subtilis C-3102 significantly increased the dry matter production of rice grains and the soil protease activity was consistently higher in the soil inoculated with B. subtilis C-3102 throughout the growing period. These results indicate that the microbial inoculant including live B. subtilis C-3102 may have growth promoting effects on rice and barley.

Go to article

Authors and Affiliations

Abdul Saleem Jamily
Yuki Koyama
Thida Aye Win
Koki Toyota
Seiya Chikamatsu
Takeshi Shirai
Taisuke Uesugi
Hiroaki Murakami
Tetsuya Ishida
Takaomi Yasuhara
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the effects of 10, 20, 30 ppm hormone mixtures (indole-3-acetic acid + gibberellic acid + kinetin) with 0.1, 0.3, 0.5 and 1 ppm zinc (Zn) concentrations alone and their mixtures on the cambial activity of sour cherry (Cerasus vulgaris Miller) cuttings were investigated. Morphological and anatomical developments of the plants were observed. The leaves of the plants treated with zinc were found to be greener than the control. Plants treated with zinc faded earlier than the control. The cambial zone thickness, the cambial zone cell line, the radial and tangential lengths of the cambial zone cells decreased with increasing concentrations of zinc and increased with increasing concentrations of hormones. The radial and tangential wall widths of the cambial zone cells increased with increasing zinc concentrations and decreased with increasing hormone concentrations. As a result, in the 0.1, 0.3, 0.5 and 1 ppm Zn concentrations, the cambial zone thickness decreased by 10, 28, 50 and 65%, respectively, compared to the control. Thirty ppm hormone mixture – H.M. (indole-3-acetic acid + gibberellic acid + kinetin) increased the cambial zone thickness by 65, 15, 5% in 0.1, 0.3 and 0.5 Zn, respectively, compared to the control. It was found that plant hormones importantly improved the harmful effects of zinc on the cambial activity of the plant cuttings.

Go to article

Authors and Affiliations

Kemal Yuce
Bekir Tileklioglu
Download PDF Download RIS Download Bibtex

Abstract

Orobanche crenata parasitism on lentil ( Lens culinaris Medik) is one of the most destructive factors for this crop in Morocco. Field and pot assays were performed to study the mitigation of O. crenata stress on two lentil genotypes, Bakria (partially resistant to O. crenata) and Zaaria (susceptible), using salicylic acid (SA) and indole acetic acid (IAA). These two hormones were applied separately at concentrations of 1 mM and 0.09 mM, respectively, using seed pre-treatment and/or foliar spray methods. SA and IAA seed pre-treatment for the susceptible genotype Zaaria and foliar spray for the resistant genotype Bakria gave the best control of O. crenata under field and controlled conditions. This control reached ~91% in Zaaria and 83% in Bakria and was sometimes accompanied by an increase in plant growth and seed yield compared to the untreated plants. Biochemical assays showed that SA and IAA reduced O. crenata infestation in lentil through induction of systemic acquired resistance characterized by increasing activities of phenol metabolizing enzymes (phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase) implicated in natural defense systems of plants. Treatment of plants with SA or IAA could be an alternative strategy of crop protection with more satisfactory preservation of the environment.
Go to article

Authors and Affiliations

Fatima Zahra Briache
1 2
Majda El Amri
1 2
ORCID: ORCID
Mounia Ennami
3
Moez Amri
4
Zine El Abidine Triqui
2
Rachid Mentag
1
ORCID: ORCID

  1. Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
  2. Department of Biotechnology and Plant Physiology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
  3. Department of Crop Production, Protection and Biotechnology, Institute of Agronomy and Veterinary Medicine Hassan II, Rabat, Morocco
  4. Agro-sciences (AgBS), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
Download PDF Download RIS Download Bibtex

Abstract

Coexisting microorganisms are abundant in nature. Plant growth promoting rhizobacteria (PGPR) is a group of beneficial microorganism living around the roots of plants which are able to confer beneficial effects on plant growth. Streptomyces sp. is a gram-positive bacteria as PGPR that can promote plant growth and enhance tolerance in adverse environment. This research was aimed to study the effects of plant growth promotion and stress tolerance of Streptomyces sp. in Arabidopsis and Brassica sp. The amount of indole-acetic acid (IAA) and phosphate solubility were assessed from isolated bacterial. Plant growth promotion was examined in 10-days old seedling with three independent experiments. Our results showed that Streptomyces sp. produced moderate levels of IAA and it was able to solubilize phosphate. Inoculation of Streptomyces sp. enhanced lateral root number, fresh weight and chlorophyll content in Arabidopsis thaliana. Moreover, the inoculation of Streptomyces sp. significantly increased vegetative growth on Arabidopsis and Brassica sp. by producing higher fresh weight and chlorophyll content. Streptomyces sp. also enhanced tolerance to abiotic stress in Arabidopsis and Brassica sp. by increasing fresh weight under condition of salt and heat stress. Under salt stress, inoculation of Streptomyces sp. in Arabidopsis induced activity of catalase enzyme and decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) production. In the molecular levels, Streptomyces sp. induced protein accumulations in Arabidopsis including nitrogen assimilation (GS1), carbohydrate metabolism (cFBPase), and the light-harvesting chlorophyll (Lhcb1) protein.

Go to article

Authors and Affiliations

Windy Manullang
Huey-wen Chuang
Download PDF Download RIS Download Bibtex

Abstract

Different anchoring groups such as thiophene-2-acetic and malonic acid were investigated for synthesis of new photosensitizers. The new dyes (photosensitizers) were made pure and determined by various analytical techniques. The chemical structure of synthesized materials was certified by analytical studies. UV-Visible and fluorescence spectra revealed intense fluorescence and absorption for organic photosensitizers. The cyclic voltammetry results showed that the two photosensitizers were suitable for dye sensitized solar cell preparation. The work electrode was gathered using tin (IV) oxide nanoparticles in dye-sensitized solar cells structure. The new photosensitizers and tin (IV) oxide were used for photovoltaic devices preparation. The power conversion efficiency was obtained as about 4.12 and 4.29% for Dye 1 and Dye 2, respectively.

Go to article

Authors and Affiliations

J. Movahedi
H. Haratizadeh
N. Falah
M. Hosseinnezhad
Download PDF Download RIS Download Bibtex

Abstract

A novel herbicidal controlled release formulation composed of (2,4-dichlorophenoxy) acetic acid (2,4-D) chemically bonded to biodegradable (R,S)-3-hydroxybutyric acid oligomers was investigated. The synthesis of (R,S)-3-hydroxy butyric acid oligomers was carried out via the ring opening polymerization of β-butyrolactone initiated by 2,4-dichlorophenoxy acetic potassium salt in the presence of complexing agents. The formed oligomers were characterized by size exclusion chromatography, proton magnetic resonance and electrospray mass spectrometry in order to fi nd out their molar mass distribution and molecular structures. An assessment of biological effectiveness of the obtained herbicidal formulation was carried out in the greenhouse vs. Sinapis alba var. Nakielska. A promotion of the controlled release formulation with decreased water solubility and with low vapor pressure of the active ingredient, instead of traditional formulations of 2,4-dichlorophenoxy acetic acid may help to ensure a greater safety for workers and reduce the risk of dissemination of the active ingredient in the soil profi le.
Go to article

Authors and Affiliations

Witold J. Kowalski
Iwona Romanowska
Marzena Smol
Andrzej Silowiecki
Mariola Głazek

This page uses 'cookies'. Learn more