Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 37
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An acoustic emission method (AE) is widespread and often applied for partial discharge (PD) diagnostics, mainly due to its ease of application as well as noninvasiveness and relatively high sensitivity. This paper presents comparative analysis of AE signals measurement results archived under laboratory conditions as well as on-site actual AE signals generated by inside PDs in electrical power transformer during its normal service. Three different PD model sources are applied for laboratory research: point to point, multipoint to plate and surface type. A typical measuring set up commonly used for on-site transformer PD diagnostics is provided for the laboratory tasks: piezoelectric joint transducer, preamplifier, amplifier and measuring PC interface. During the on-site research there are three measuring tracks applied simultaneously. Time domain, time-frequency domain and statistical tools are used for registered AE signals analysis. A number of descriptors are proposed as a result of the analysis. In the paper, at- tempt of AE signals descriptors, archived under laboratory condition application possibilities for on-site PD diagnostics of power transformers during normal service is made.
Go to article

Authors and Affiliations

Michał Kunicki
Andrzej Cichoń
Sebastian Borucki
Download PDF Download RIS Download Bibtex

Abstract

Non-invasive damage monitoring of concrete structures by means of Acoustic Emission (AE) requires multitransducers, multi-channel acquisition, high sampling frequency and long observation time. Owing to its propagation in concrete, the signal from AE reduces its amplitude during the propagation, and, consequently, some events can be lost due to lower signal intensity than the trigger level set on one sensor only. The innovative proposal discussed in the paper consists in the introduction of a Flat Amplifier and Trigger generator block (FAT) in order to generate a logical trigger when the AE is detected by any transducer. Experimental tests confirm the effectiveness of the FAT to acquire all the AE events and to increase the evaluation accuracy of damage indexes.

Go to article

Authors and Affiliations

Francesco Lamonaca
Antonio Carrozzini
Domenico Grimaldi
Renato Sante Olivito
Download PDF Download RIS Download Bibtex

Abstract

Thanks to their excellent strength and durability, composite materials are used to manufacture many important structural elements. In the face of their extensive use, it is crucial to seek suitable methods for monitoring damages and locating their origins. The purpose of the article was to verify the possibility of applying the acoustic emissions (AE) method in the detection of damages in the structures of composite materials. The experimental part comprised static tensile tests carried out on various sandwich composites, including simultaneous registration of elastic waves with increasing loads, carried out with the use of an acousticelectrical sensor connected. The signal obtained from the sensor was then further processed and used to draw up diagrams of the AE hits, amplitude, root mean square of the AE source signal (RMS) and duration in the function of time. These diagrams were then applied on their corresponding stretching curves, the obtained charts were analysed. The results obtained point to a conclusion that the acoustic emissions method can be successfully used to detect and locate composite material damages.
Go to article

Bibliography

1. Aggelis D., Barkoula N.-M., Matikas T., Paipetis A. (2012), Acoustic structural health monitoring of composite materials: Damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics, Composities Science and Technology, 72(10): 1127–1133, doi: 10.1016/ j.compscitech.2011.10.011.
2. Al-Jumaili S.K., Pearson M.R., Holford K.M., Eaton M.J., Pullin R. (2016), Acoustic emission source location in complex structures using full automatic delta T mapping technique, Mechanical Systems and Signal Processing, 72–73: 513–524, doi: 10.1016/j.ymssp.2015.11.026.
3. Caesarendra W., Kosasih B., Tieu A.K., Zhu H., Moodie C.A.S., Zhu Q. (2016), Acoustic emissionbased condition monitoring methods: Review and application for low speed slew bearing, Mechanical Systems and Signal Processing, 72–73: 134–159, doi: 10.1016/j.ymssp.2015.10.020.
4. De Rosa I., Santulli C., Sarasini F. (2009), Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: A literature review, Composites Part A: Applied Science and Manufacturing, 40(9): 1456–1469, doi: 10.1016/j.composite sa.2009.04.030.
5. Dudzik K., Labuda W. (2020), The possibility of applying acoustic emission and dynamometric methods for monitoring the turning process, Materials (Basel), 13(13): 2926, doi: 10.3390/ma13132926.
6. Gołaski L. (1994), Acoustic emission in composite materials [in Polish: Emisja akustyczna w materiałach kompozytowych], [in]: Małecki J., Ranachowski Z. [Eds], Acoustic emission. Sources. Methods. Usage [in Polish: Emisja akustyczna. Zródła. Metody. Zastosowania], Warszawa: PASCAL.
7. Gutkin R., Green C.J., Vangrattanachai S., Pinho S.T., Robinson P., Curtis P.T. (2011), On acoustic emission for failure investigation in CFRP: Pattern recognition and peak frequency analyses, Mechanical Systems and Signal Processing, 25(4): 1393– 1407, doi: 10.1016/j.ymssp.2010.11.014.
8. Hoła J. (1999), Acoustic-emission investigation of failure of high strength concrete, Archives of Acoustics, 24(2): 233–244.
9. Juskowiak E., Małdachowska A., Panek M. (2013), Acoustic emission of composite sandwich panels during three-point bending [in Polish: Emisja akustyczna kompozytowych płyt przekładkowych podczas trójpunktowego zginania], Przetwórstwo Tworzyw, 19(4): 351– 354.
10. Kurzydłowski K., Boczkowska A.S.J., Konopka K., Spychalski W. (2005), Monitoring of failures in the composites by non-destructive methods [in Polish: Monitorowanie uszkodzen w kompozytach metodami nieniszczacymi], Polymers, 50(4): 255–261.
11. Kyzioł L., Panasiuk K., Barcikowski M., Hajdukiewicz G. (2020), The influence of manufacturing technology on the properties of layered composites with polyester–glass recyclate additive, Progress in Rubber, Plastics and Recycling Technology, 36(1): 18–30, doi: 10.1177/1477760619895003.
12. Marec A., Thomas J., Guerjouma R.E. (2008), Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data, Mechanical Systems and Signal Processing, 22(6): 1441–1448, doi: 10.1016/j.ymssp.2007.11.029.
13. McCrory J.P. et al. (2005), Damage classification in carbon fibre composites using acoustic emission: A comparison of three techniques, Composites: Part B, 68: 424–430, doi: 10.1016/j.compositesb.2014.08.046.
14. Mohammadi R., Najafabadi M.A., Saeedifar M., Yousefi J., Minak G. (2017), Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites, Composites Part B: Engineering, 118: 427–435, doi: 10.1016/j.compositesb.2016.09.101.
15. Monti A., El Mahi A., Jendli Z., Guillaumat L. (2016), Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission, Composites Part A: Applied Science and Manufacturing, 90: 100–110, doi: 10.1016/j.compositesa.2016.07.002.
16. Nikbakht M., Yousefi J., Hosseini-Toudeshky H., Minak G. (2017), Delamination evaluation of composite laminates with different interface fiber orientations using acoustic emission features and micro visualization, Composites Part B: Engineering, 113: 185–196, doi: 10.1016/j.compositesb.2016.11.047.
17. Panasiuk K., Hajdukiewicz G. (2017), Production of composites with added waste polyester-glass with their initial mechanical properties, Scientific Journals of the Maritime University of Szczecin, 52(124): 30–36, doi: 10.17402/242.
18. Panasiuk K., Kyzioł L., Dudzik K. (2019), The use of acoustic emission signal (AE) in mechanical tests, Przeglad Elektrotechniczny, 95(11): 8–11, doi: 10.15199/48.2019.11.03.
19. PN-EN ISO 527-4:2000, Plastics – Determination of mechanical properties under static stretching – Test conditions for isotropic and orthotropic fiber-reinforced plastic composites.
20. PN-EN 1330-9:2017-09, Non-destructive testing – Terminology – Part 9: Terms used in acoustic emission testing.
21. PN-EN 13554: 2011E, Non-destructive testing – Acoustic emission – General rules. 22. PN-EN 15857: 2010E, Non-destructive testing – Acoustic emission – Testing of fiber-reinforced polymers – Specified methodology and general evaluation criteria.
23. Ranachowski Z., Józwiak-Niedzwiedzka D., Brandt A., Debowski T. (2012), Application of acoustic emission method to determine critical stress in fibre reinforced mortar beams, Archives of Acoustics, 37(3): 261–268, doi: 10.2478/v10168-012-0034-3.
24. Saeedifar M., Fotouhi M., Ahmadi Najafabadi M., Hosseini Toudeshky H., Minak G. (2016), Prediction of quasi-static delamination onset and growth in laminated composites by acoustic emission, Composites Part B: Engineering, 85: 113–122, doi: 10.1016/j.compositesb.2015.09.037.
25. Shafiq B., Quispitupa A., Just F., Banos M. (2005), Sandwich Structures 7: Advancing with Sandwich Structures and Materials: Proceedings of the 7th International Conference on Sandwich Structures, Aalborg University, Aalborg, Denmark, August 29– 31, 2005, Springer Science & Business Media, doi: 10.1007/1-4020-3848-8.
26. Xiao Y., Qiao W., Fukuda H., Hatta H. (2016), The effect of embedded devices on structural integrity of composite laminates, Composite Structures, 153: 21–29, doi: 10.1016/j.compstruct.2016.06.007.
27. Xingmin Z., Xiong Y.I. (2006), Investigation of damage mechanisms in self-reinforced polyethylene composites by acoustic emission, Composite Science and Technology, 66(3–4): 444–449, doi: 10.1016/j.compsci tech.2005.07.013.
28. Yu Y.-H., Cho J.-H., Kweon J.-H., Kim D.-H. (2006), A study on the failure detection of composite materials using an acoustic emission, Composite Structures, 75(1–4): 163–169, doi: 10.1016/j.compstruct.2006.04.070.
29. Zaki A., Chai H., Aggelis D., Alver N. (2015), Non-destructive evaluation for corrosion monitoring in concrete: a review and capability of acoustic emission technique, Sensors, 15(8): 19069–19101, doi: 10.3390/s150819069.
30. Zakłady Chemiczne „Organika Sarzyna” S.A., http://www.krisko.lublin.pl/chemia/zywice-poliestrowepolimal/konstrukcyjne-ogolnego-stosowania-polimal-1094-awtp-1/polimal-1094-awtp-1/polimal-1094-awtp-1-a-5-kg-1.html (access: 20.07.2020).
Go to article

Authors and Affiliations

Katarzyna Panasiuk
1
Krzysztof Dudzik
2
Grzegorz Hajdukiewicz
1

  1. Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences, Gdynia, Poland
  2. Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the application of Acoustic Emission (AE) method for detection and registration of partial discharges (PD) generated in medium voltage (MV) cable isolation and MV cable head. The insulation of the high voltage cable is made of a flexible material whose properties are characterised by a high coefficient of attenuation of the acoustic signals. For this reason, the AE method has not been used so far to detect PD in energetic cables. The subjects of the research were the MV cable and the standard T-type cable head. The cable contained defects which were the source of partial discharges. In case of cable head the PD were provoked by thin grounded electrode which was introduced into connector opening. The results of AE measurements are presented in the form of spectrograms. Acoustic Emission was evoked when the applied voltage level reached the value of 7.5 kV for the cable and 4 kV for the cable head. The authors used the acoustic instrumentation of their own design intended for future field use. Obtaining successful results of partial discharges measurements using the acoustic method in the cable insulation makes an original contribution of the presented work.
Go to article

Authors and Affiliations

Zbigniew Ranachowski
1
ORCID: ORCID
Krzysztof Wieczorek
2
Przemysław Ranachowski
1
Tomasz Dębowski
1

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  2. Department of Electrical Engineering Fundamentals, Wrocław University of Science and Technology, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The authors of this paper analysed Acoustic Emission (AE) signal generated in different stages of punch process, emitted from crank PMSC - 12 punch press. The details of the instrumentation used are described. The experimental part describes the influence of feedstock thickness and hardness to the intensity of the emitted signal. The final part of the investigation presents the changes of AE signal caused by simulated tool abrasive wear. The possibilities of AE monitoring of punching of thin plates are also discussed.
Go to article

Authors and Affiliations

Zbigniew Ranachowski
ORCID: ORCID
Tomasz Dębowski
Leszek Moszczyński
Download PDF Download RIS Download Bibtex

Abstract

On-load tap changers (OLTC) are some of the main transformer elements that make voltage adjustment in a power network possible. Their failures often cause shutdowns of distribution transformers. The paper presents research work aimed at the assessment of the technical condition of OLTCs by the acoustic emission method (EA). This method makes the OLTC diagnosis possible without the need of disconnecting the transformer from the system. The measurements were taken in laboratory conditions. The influence on the operation non-concurrence of the power tap changer contacts on the AE registered signals has been investigated. The signals registered were subjected to analyses in the time and time-frequency domains. The result analysis in the time domain was carried out using the Hilbert transform and calculating characteristic times for the particular runs. A short-time Fourier transform was used for the assessment of results in the time-frequency domain.

Go to article

Authors and Affiliations

Andrzej Cichoń
Sebastian Borucki
Tomasz Boczar
Download PDF Download RIS Download Bibtex

Abstract

The condition of the conical surface of the needle and seat in a fuel atomizer can be assessed by using the acoustic emission method. The assessment of this conical tribological pair can be performed by up-to-date measurement methods that substantially enhance the quality of evaluating the technical condition of conical surfaces of the atomizer needle and seat.

Go to article

Authors and Affiliations

Zygmunt Raunmiagi
Download PDF Download RIS Download Bibtex

Abstract

An alternative method for analysis of acoustic emission (AE) signals generated by partial discharges (PD), based on a correlation between voltage phase run and AE pulses, so called phase resolved PD pattern (PRPD), is presented in the paper. PRPD pattern is a well-known analysis tool commonly used in such PD diagnostic methods as conventional electrical and UHF ones. Moreover, it yields various signal analysis abilities and allows a direct correlation indication between measurement results achieved using different methods. An original PRPD measurement methodology applied for AE method as well as some exemplary measurement results and further data analysis capabilities are presented in the paper. Also a comparative analysis of PRPD patterns achieved using various measurement methods and different PD source configurations have been investigated. All presented experiments were done under laboratory conditions using PD model sources immersed in the insulation oil. The main purpose of the presented research is to indicate an all-embracing analytical tool that yields an ability to direct comparison (qualitative as well as quantitative) of the AE measurement results with other commonly applied PD measurement methods. The presented results give a solid fundamental for further research work concerning a direct correlation method for AE and other described in the paper diagnostic techniques, mainly in order to continue PD phenomena analysis and assessment in real life high voltage apparatus insulation systems under normal onsite operation conditions.
Go to article

Authors and Affiliations

Michał Kunicki
Andrzej Cichoń
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results concerning the use of clustering methods to identify signals of acoustic emission (AE) generated by partial discharge (PD) in oil-paper insulation. The conducted testing featured qualitative analysis of the following clustering methods: single linkage, complete linkage, average linkage, centroid linkage and Ward linkage. The purpose of the analysis was to search the tested series of AE signal measurements, deriving from three various PD forms, for elements of grouping (clusters), which are most similar to one another and maximally different than in other groups in terms of a specific feature or adopted criteria. Then, the conducted clustering was used as a basis for attempting to assess the effectiveness of identification of particular PD forms that modelled exemplary defects of the power transformer’s oil-paper insulation system. The relevant analyses and simulations were conducted using the Matlab estimation environment and the clustering procedures available in it. The conducted tests featured analyses of the results of the series of measurements of acoustic emissions generated by the basic PD forms, which were obtained in laboratory conditions using spark gap systems that modelled the defects of the power transformer’s oil-paper insulation.
Go to article

Authors and Affiliations

Sebastian Borucki
Jacek Łuczak
Dariusz Zmarzły
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this work is to distinguish between Acoustic Emission (AE) signals coming from mechanical friction and AE signals coming from concrete cracking, recorded during fourteen seismic simulations conducted with the shaking table of the University of Granada on a reinforced concrete slab supported on four steel columns. To this end, a particular criterion is established based on the Root Mean Square of the AE waveforms calculated in two different temporal windows. This criterion includes a parameter calculated by optimizing the correlation between the mechanical energy dissipated by the specimen (calculated by means of measurements with accelerometers and displacement transducers) and the energy obtained from the AE signals recorded by low-frequency piezoelectric sensors located on the specimen. The final goal of this project, initiated four years ago, is to provide a reliable evaluation of the level of damage of Reinforced Concrete specimens by means of AE signals to be used in future Structural Health Monitoring strategies involving RC structures.
Go to article

Authors and Affiliations

Francisco A. Sagasta
Juan L. Torné
Antonio Sánchez-Parejo
Antolino Gallego
Download PDF Download RIS Download Bibtex

Abstract

A fault diagnostics system of three-phase induction motors was implemented. The implemented system was based on acoustic signals of three-phase induction motors. A feature extraction step was performed using SMOFS-20-EXPANDED (shortened method of frequencies selection-20-Expanded). A classification step was performed using 3 classifiers: LDA (Linear Discriminant Analysis), NBC (Naive Bayes Classifier), CT (Classification Tree). An analysis was carried out for incipient states of three-phase induction motors measured under laboratory conditions. The author measured and analysed the following states of motors: healthy motor, motor with one faulty rotor bar, motor with two faulty rotor bars, motor with faulty ring of squirrel-cage. Measured and analysed states were caused by natural degradation of parts of the machine. The efficiency of recognition of the analysed states was good. The proposed method of fault diagnostics can find application in protection of three-phase induction motors.

Go to article

Authors and Affiliations

Adam Glowacz
Download PDF Download RIS Download Bibtex

Abstract

In this paper the influence of high power airborne ultrasound on drying biological material (Lobo apple) properties is considered. Apple samples were dried convectively at 75 ◦C and air flow of 2 m/s with and without ultrasound assist at 200W. During experiments, sun-drenched and not sun-drenched part of fruits were considered separately to show, how the maturity of the product influences dry material properties. Dried apple crisps in a size of small bars were subjected to compression tests during which acoustic emission (AE) was used. Analysis of AE and strength test results shows that correlations between received acoustic signals and sensory attributes (crispness, brittleness) of dried apples can be found. It was noted that ultrasound improved fruit brittleness in comparison with pure convective processes, where fruit maturity determines a kind of destruction and behaviour of dried apple crisps.

Go to article

Authors and Affiliations

Jacek Banaszak
Andrzej Pawłowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results obtained from a laboratory investigation conducted on material from a pressure vessel after longterm operation in the oil refinery industry. The tested material contained structural defects which arose from improper heat treatment during steel plate manufacturing. Complex tensile tests with acoustic emission signal recording were conducted on both notched and unnotched specimens. The detailed analysis of different acoustic emission criteria allowed as to detect each stage of plastic deformation and microstructural damage processes after a long-term operation, and unused carbon steels during quasi-static axial tension testing. The acoustic emission activity, generated in the typical stages of material deformation, was correlated by microscopy observations during the tensile test. The results are to be used as the basis for new algorithms for the assessment of the structural condition of in-service pressure equipment.

Go to article

Authors and Affiliations

I. Lyasota
Ł. Sarniak
P. Kustra
Download PDF Download RIS Download Bibtex

Abstract

The study presented research on the possibility of using acoustic emission to detect and analyze the development of the alkali-silica reaction (ASR) in cement mortars. The experiment was conducted under laboratory conditions using mortars with reactive opal aggregate, accelerating the reaction by ensuring high humidity and temperature, in accordance with ASTM C227. The progress of corrosion processes was monitored continuously for 14 days. The tests were complemented with measurements of the expansion of the mortars and observations of microstructures under a scanning electron microscope. The high sensitivity of the acoustic emission method applied to material fracture caused by ASR enabled the detection of corrosion processes already on the first day of the test, much sooner than the first recorded changes in linear elongation of the specimens. Characteristic signal descriptors were analyzed to determine the progress of corrosion processes and indicate the source of the cracks. Analysis of recorded 13 AE parameters (counts total, counts to peak, duration, rise time, energy, signal strength, amplitude, RMS, ASL, relative energy, average frequency, initial frequency and reverberation frequency) indicates that the number of counts, signal strength and average frequency provide most information about the deleterious processes that occur in the reactive aggregate mortars. The values of RA (rise time/amplitude) and AF (average frequency) enabled the classification of detected signals as indicating tensile or shear cracks. The acoustic emission method was found suitable for monitoring the course of alkali-aggregate reaction effects.

Go to article

Authors and Affiliations

G. Świt
J. Zapała-Sławeta
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the microscopic and mechanoacoustic study of degradation processes of the porcelain material C 130 type.

This kind of material is used in the production of the most durable and reliable electrotechnical elements. Raw material composition of the studied porcelain was modified. This had an impact on the inner properties, cohesion and – in consequence – on operational properties of the material.

Using mechanical-acoustic and microscopic methods of testing of small-size samples that were subjected to compression, it was possible to distinguish successive stages of degradation of the porcelain structure. These stages were generally typical of the porcelain materials. In the authors’ opinion, they are connected to the ageing process happening over many years of work under operating conditions.

Optimization of composition and technological properties – important during technological processes – resulted in a slight decrease in inner cohesion of the porcelain. When compared to the reference material – typical domestic C 130 material, mechanical strength was somewhat lower. Carried out investigations proved that resistance of the investigated material to the ageing degradation process – during long term operation – also decreased. The improvement of technological parameters and the reduction in the number of defective elements occurred simultaneously with some decrease in the operational parameters of the material. To restore their initial high level, further work is needed to optimize the raw material composition of the porcelain.

Go to article

Authors and Affiliations

P. Ranachowski
Z. Ranachowski
K. Wieczorek
M. Jaroszewski
S. Kudela Jr
Download PDF Download RIS Download Bibtex

Abstract

This paper presents comparative analysis of various acoustic signals expected during partial discharge (PD) measurements in operating power transformer. Main purpose of the paper is to yield relevant and reliable method to distinguish between various acoustic emission (AE) signals emitted by PD and other sources, with particular consideration of real-life results rather than laboratory simulations. Therefore, selected examples of real-life AE signals registered in seven different power transformers, under normal operation conditions, within few years are showed and analyzed. Five scenarios are investigated, which represent five types of AE sources: PD generated by artificial sources, and next four real-life sources (including PD in working transformer, oil flow, oil pumps and core). Several different signal processing methods are applied and compared in order to identify the PD signals. As a result, an energy patterns analysis based on the wavelet decomposition is found as the most reliable tool for identification of PD signals. The presented results may significantly support the process of interpretation of the PD measurement results, and may be used by field engineers as well as other researchers involved in PD analysis using AE method. Finally, observed properties also provide a solid basis for establishing or improving complete classification method based on the artificial intelligence algorithms.

Go to article

Authors and Affiliations

Michał Kunicki
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the results of investigations on the properties of acoustic emission signals generated in a tested pressure vessel are presented. The investigations were performed by repeating several times the following procedure: an increase in pressure, maintaining a given pressure level, a further increase in pressure, and then maintaining the pressure at new determined level. During the tests the acoustic emission signals were recorded by the measuring system 8AE-PD with piezoelectric sensors D9241A. The used eight-channel measuring system 8AE-PD enables the monitoring, recording and then basic and advanced analysis of signals.

The results of basic analysis carried out in domain of time and the results of advanced analysis carried out in the discrimination threshold domain of the recorded acoustic emission signals are presented in the paper.

In the framework of the advanced analysis, results are described by the defined by the author descriptors with acronyms ADC, ADP and ADNC. Such description is based on identifying the properties of amplitude distributions of acoustic emission signals by assigning them the level of advancement. It is shown that for signals including continoues AE or single burst AE signals descriptions of such registered signals by means of ADC, ADP and ADNC descriptors and by Upp and Urms descriptors provide identical ordering of registered acoustic emission signals. For complex signals, the description using ADC, ADP and ADNC descriptors based on the analysis of amplitude distributions of recorded signals gives the order of signals with more accurate connection with deformational processes being sources of acoustic emission signals.

Go to article

Authors and Affiliations

Franciszek Witos
Download PDF Download RIS Download Bibtex

Abstract

Safety and reliability are primary concerns in launch vehicle performance due to the involved costs and risk. Pressure vessels are one of the significant subsystems of launch vehicles. In order to have minimal weight, high strength material viz. maraging steel M250 grade is used in realizing the pressure vessel casing hardware. Despite the best efforts in design methodology, quality evaluation in production and effective structural integrity assessment is still a farfetched goal. The evolution of such a system requires, first, identification of an appropriate technique and next its adoption to meet the challenges posed by advanced materials like maraging steels. In fact, a quick survey of the available Non-Destructive Evaluation (NDE) techniques suggests Acoustic Emission (AE) as an effective structural integrity assessment tool capable of identifying any impending failure or degradation at an earlier stage. Experience shows that the longitudinal welds in the pressure vessels are quite vulnerable to failure due to the fact that they experience the maximum stress (i.e. hoop stress). Loading welded tensile samples are quite synonymous to the hoop stress experienced by longitudinal welds. An attempt is made to compare the Acoustic Emission data acquired during tensile deformation of maraging steel welded specimens. A total of 16 welded specimen’s with known defects were studied for their tensile behaviour is in connection with Acoustic Emission data. The lowest failure load was 70.5 kN and the highest being 84.8 kN. AE activity graphs viz. cumulative AE activity, hit rate, energy rate, count rate, AE amplitude history, AE count history, AE energy history, amplitude-count correlation and hit amplitude distribution have been investigated and salient features with respect to the data have been critically studied and relevant correlations are arrived at.

Go to article

Authors and Affiliations

Gowri Shankar Wuriti
Somnath Chattopadhyaya
Grzegorz Krolczyk
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the presented research is to investigate the partial discharge (PD) phenomenon variability under long-term AC voltage with particular consideration of the selected physical quantities changes while measured and registered by the acoustic emission method (AE). During the research a PD model source generating surface discharges is immersed in the brand new insulation mineral oil. Acoustic signals generated by the continuously occurred PDs within 168 hours are registered. Several qualitative and quantitative indicators are assigned to describe the PD variability in time. Furthermore, some longterm characteristics of the applied PD model source in mineral oil, are also presented according to acoustic signals emitted by the PD. Finally, various statistical tools are applied for the results analysis and presentation. Despite there are numerous contemporary research papers dealing with long-term PD analysis, such complementary and multiparametric approach has not been presented so far, regarding the presented research. According to the presented research from among all assigned indicators there are discriminated descriptors that could depend on PD long-term duration. On the grounds of the regression models analysis there are discovered trends that potentially allow to apply the results for modeling of the PD variability in time using the acoustic emission method. Subsequently such an approach may potentially support the development and extend the abilities of the diagnostic tools and maintenance policy in electrical power industry.

Go to article

Authors and Affiliations

Michał Kunicki
Download PDF Download RIS Download Bibtex

Abstract

Q235 steel is widely used in engineering and construction. Therefore, it is important to identify the damage mechanism and the acoustic emission (AE) response of the material to ensure the safety of structures. In this study, an AE monitor system and an in situ tensile test with an optical microscope were used to investigate the AE response and insight into the damage process of Q235 steel. The surface of the specimen was polished and etched before the test in order to improve the quality of micrographs. Two kinds of AE responses, namely a burst and a continuous signal, were recorded by the AE monitor system during the test. Based on the in situ test, it was observed that the damage of Q235 steel was induced by the crystal slip and the inclusion fracture. Since the crystal slip was an ongoing process, continuous AE signals were produced, while burst AE signals were possibly produced by the inclusion fracture which occurred suddenly with released higher energy. In addition, a great number of AE signals with high amplitude were observed during the yielding stage and then the number and amplitude decreased.

Go to article

Authors and Affiliations

Ying Zhang
Yue Li
Huan Sheng Lai
Chunmei Bai
Kang Lin Liu
Download PDF Download RIS Download Bibtex

Abstract

Metal network compounds have primary properties. The use of lightweight and low vitality is a testament to the growing interest in the automotive industry. Aluminum alloys, due to their advanced physical, mechanical and tribological properties, have become a highly emerging material for a variety of industrial applications and the importance of efficient material selection is explained. In this paper, an Al8011 hybrid metal matrix composite is developed through the stir casting process. The different weight proportions of B 4C (3%, 6%, 9% & 12%) and fixed proportions of 2% MoS2 have been used. Composite developed are subjected to mechanical properties evaluation and seawater corrosion studies following standard procedures. To study the porosity of the composite samples, theoretical density and actual density are calculated. An acoustic emission system-assisted tensile test is carried out to report the strength of the composite. From this experimental method, adding reinforcement can increase the tensile strength and hardness of the composites. Under sea water, the increase in reinforcement found an increase in corrosion resistance. Fractured surfaces were perused using SEM and EDS analysis.
Go to article

Authors and Affiliations

C.R. Kannan
1
S. Suresh
2
M. Navaneetha Krishnan
3

  1. Universal College of Engineering and Technology, Department of Mechanical Engineering, Vallioor, Tamilnadu, India
  2. University College of Engineering, Nagercoil, Department of Mechanical Engineering Tamilnadu, India
  3. Amrita College of Engineering and Technology, Department of Mechanical Engineering, Amritagiri, Erachakulam (Po), Nagercoil, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

In-situ study of deformation behaviour and mechanisms occurring during early stages of deformation is of a great practical importance. Low stacking fault energy materials, as is the case of AISI 304L, show non-linear deformation characteristics way below the bulk yield point. Shockley partial dislocations, formation of stacking faults respectively, resulting in creation of shear bands and ε-martensite transformation are the mechanisms occurring in the low strains in the studied steel. Acoustic emission and infrared thermography have been used in this study to investigate the deformation kinetics at the low strain stages of slow strain rate tensile tests. Acoustic emission cumulative energy together with the tracking of specimen maximum temperature have been found to be very useful in-situ techniques both supplementing each other in the sense of the sensitivity to different mechanisms. Mechanical, acoustic emission and infrared thermography results are discussed in detail with respect to potential occurred mechanism.
Go to article

Authors and Affiliations

A. Sapietová
1
ORCID: ORCID
M. Raček
1
ORCID: ORCID
V. Dekýš
1
ORCID: ORCID
M. Sapieta
1
ORCID: ORCID
M. Sága
1
ORCID: ORCID
P. Šofer
2
ORCID: ORCID

  1. University of Žilina, Faculty of Mechanical Engineering, Department of Applied Mechanics, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  2. VŠB -Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Control Systems and Instrumentation, 17. listopadu 15/2127,708 33 Ostrava-Poruba, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The goal of the research was to analyze the acoustic emission signal recorded during heat treatment. On a special stand, samples prepared from 27MnCrB5-2 steel were tested. The steel samples were heated to 950°C and then cooled continuously in the air. Signals from phase changes occurring during cooling were recorded using the system for registering acoustic emission. As a result of the changes, Widmanstätten ferrite and bainite structures were observed under a scanning microscope. The recorded acoustic emission signal was analyzed and assigned to the appropriate phase transformation with the use of artificial neural networks.
Go to article

Bibliography

  1.  T.Z. Wozniak, K. Rozniatowski, and Z. Ranachowski, “Acoustic emission in bearing steel during isothermal formation of midrib,” Met. Mater. Int., vol. 17, pp. 365–373, 2011, doi: 10.1007/s12540-011-0611-4.
  2.  L. Kyzioł, K. Panasiuk, G. Hajdukiewicz, and K. Dudzik, “Acoustic Emission and K-S Metric Entropy as Methods for Determining Mechanical Properties of Composite Materials”, Sensors, vol. 21, p. 145, 2021, doi: 10.3390/s21010145.
  3.  A. Adamczak-Bugno, G. Swit, and A. Krampikowska, “Application of the Acoustic Emission Method in the Assessment of the Technical Condition of Steel Structures,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 471, no. 3 p. 032041, 2019, doi: 10.1088/1757-899X/471/3/032041.
  4.  A. Krampikowska, and A. Adamczak-Bugno, “Evaluation of destructive processes in FRC composites using time-frequency analysis of AE signals,” MATEC Web Conf., vol. 262, p. 06006, 2019, doi: 10.1051/matecconf/201926206006.
  5.  G. Świt, A. Krampikowska, T. Pała, S. Lipiec, and I. Dzioba, “Using AE Signals to Investigate the Fracture Process in an Al–Ti Laminate,” Materials, vol. 13, p. 2909, 2020, doi: 10.3390/ma13132909.
  6.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, P. Ranachowski, and A. Trafarski, “The application of acoustic emission and artificial neural networks in an analysis of kinetics in the phase transformation of tool steel during austempering,” Arch. Metall. Mater., vol. 62, pp. 603‒609, 2017, doi: 10.1515/amm-2017-0089.
  7.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, A. Trafarski, and G. Domek, “Analysis of acoustic emission signals at austempering of steels using neural networks,” Met. Mater. Int., vol.  23, pp. 426‒433, 2017, doi: 10.1007/s12540-017-6347-z.
  8.  Y. Li et al., “Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel”, Int. J. Miner. Metall. Mater., vol. 21, pp. 1196–1204, 2014, doi: 10.1007/s12613-014-1027-1.
  9.  B.I. Voronenko, “Acoustic emission during phase transformations in alloys,” Met. Sci. Heat Treat., vol. 24, pp. 545‒553, 1982, doi: 10.1007/BF00769364.
  10.  M. Łazarska, T.Z. Woźniak, Z. Ranachowski, A. Trafarski, and S. Marciniak, “The use of acoustic emission and neural network in the study of phase transformation below MS,” Materials, vol. 14, no. 3, p. 551, 2021, doi: 10.3390/ma14030551.
  11.  T.Z. Wozniak, K. Różniatowski, and Z. Ranachowski, “Application of acoustic emission to monitor bainitic and martensitic transformation,” Kovove Mater., vol. 49, pp. 319‒331, 2011, doi: 10.4149/km_2011_5_319.
  12.  A. Pawełek, Z. Ranachowski, A. Piątkowski, S. Kúdela, Z. Jasieński, and S. Kúdela, “Acoustic emission and strain mechanisms during compression at elevated temperature of ß phase Mg-Li-Al composites reinforced with ceramic fibres,” Arch. Metall. Mater., vol. 52, pp. 41‒48. 2007.
  13.  Z. Ranachowski, “Acoustic emission in the diagnosis of civil structures,” Roads Bridges, vol. 2, pp. 151‒173, 2012.
  14.  J. Ranachowski, Problemy współczesnej akustyki, Polska Akademia Nauk, IPPT, Warszawa, 1991.
  15.  R. Botten, X. Wu, D. Hu, and M.H. Loretto, “The significance of acoustic emission during stressing of TiAl-based alloys,” Acta Mater., vol. 49, pp. 1687‒1691, 2001, doi: 10.1016/S1359-6454(01)00091-X.
  16.  A. Lambert, X. Garat, T. Sturel, A. F. Gourgues, and A. Gingell, “Aplication of Acoustic Emission to the Study of Cleavage Fracture Mechanism in a HSLA Steel,” Scripta Mater., vol. 43, pp. 161‒166, 2000, doi: 10.1016/S1359-6462(00)00386-9.
  17.  K. Panasiuk, L. Kyziol, K. Dudzik, and G. Hajdukiewicz, “Application of the Acoustic Emission Method and Kolmogorov-Sinai Metric Entropy in Determining the Yield Point in Aluminium Alloy,” Materials, vol. 13, p. 1386, 2020, doi: 10.3390/ma13061386.
  18.  A. Pawełek, W.S. Ozgowicz, Z. Ranachowski, and S. Kúdela, “Behaviour of acoustic emission in deformation and microcracking processes of Mg alloys matrix composites subjected to compression tests,” Arch. Curr. Res. Int., vol.8, no. 2, pp. 1‒13, 2017, doi: 10.9734/ ACRI/2017/34598.
  19.  R. Karczewski, A. Zagórski, J. Płowiec, and W. Spychalski, “Charakterystyki sygnałów akustycznych podczas obciążania wybranych stali konstrukcyjnych wykorzystywanych do budowy urządzeń ciśnieniowych,” Weld. Tech. Rev., vol. 83, no. 13, 2011, doi: 10.26628/ wtr.v83i13.417.
  20.  I. Baran, “Non-destructive testing of technical equipment using acoustic emission method,” Nondestr. Testing Diagn., vol. 4, pp. 15‒19, 2019, doi: 10.26357/BNiD.2019.017.
  21.  D. Aggelis, E. Kordatos, and T. Matikas, “Acoustic emission for fatigue damage characterization in metal plates”, Mech. Res. Commun., vol. 38, pp. 106–110, 2011, doi: 10.1016/j.mechrescom.2011.01.011.
  22.  K. Jemielniak, “Some aspects of acoustic emission signal pre-processing,” J. Mater. Process. Tech., vol. 109, pp. 242‒247, 2001, doi: 10.1016/S0924-0136(00)00805-0.
  23.  RILEM Technical Committee (Masayasu Ohtsu), “Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete,” Mater. Struct., vol. 43, pp. 1177–1181, 2010, doi: 10.1617/s11527- 010-9638-0.
  24.  Z. Ranachowski, “The application of a neural network to classify the acoustic emission waveforms emitted by the concrete under thermal stress,” Arch. Acoust., vol. 21, no. 1, pp. 89‒98, 1996.
  25.  H.K.D.H. Bhadeshia, “Phase transformations contributing to the properties of modern steels,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 255–256, 2010, doi: 10.2478/v10175-010-0024-4.
  26.  S.M.C. Van Bohemen, An acoustic emission study of martensitic and bainitic transformations in carbon steel, Delft University Press, 2004.
  27.  A. Pawełek, J. Kuśnierz, J. Bogucka, Z. Jasieński, and Z. Ranachowski, “Acoustic emission and the Portevin-Le Châtelier effect in tensile tested Al alloys before and after processing by accumulative roll bonding,” Arch. Metall. Mater., vol.  54, pp. 83‒88, 2009.
  28.  A. Pawełek et al., “Acoustic emission and the Portevin-Le Chatelier effect in tensile tested Al processed by ARB technique,” Arch. Acoust., vol. 32, no. 4, pp. 955‒962, 2007.
  29.  H.N.G. Wadley and C.B. Scruby, “Cooling rate effects on acoustic emission- microstructure relationships in ferritic steels,” J. Mater. Sci., vol. 26, pp. 5777–5792, 1991, doi: 10.1007/BF01130115.
  30.  C.B. Scruby and H.N.G Wadley, “Tempering Effects on Acoustic Emission Microstructural Relationships in Ferritic Steels,” J. Mater. Sci., vol. 28, pp. 2501–2516, 1993, doi: 10.1007/BF01151686.
  31.  V.V. Roshchupkin et al., “The use of acoustic methods to investigate the dynamics of recrystallization and phase transitions in Armco iron and structural steel,” High Temp., vol.  42, pp. 883–887, 2004, doi: 10.1007/s10740-005-0032-5.
  32.  G.R. Speich and A.J. Schwoeble, “Acoustic Emission During Phase Transformałion in Steel”, in Monitoring Structural Integrity by Acoustic Emission STP571. J. C. Spanner and J.W. McElroy, Eds., ASTM International, USA, 1975, pp. 40‒58.
Go to article

Authors and Affiliations

Andrzej Trafarski
1
Małgorzata Łazarska
1
Zbigniew Ranachowski
2
ORCID: ORCID

  1. Institute of Materials Engineering, Kazimierz Wielki University in Bydgoszcz, ul. J.K. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the evolution of different failure mechanisms in carbon fiber reinforced polymer composites is being investigated using acoustic emission technique, unsupervised clustering technique and improved b-value analysis. The experimental part involved the realization of tensile tests of different materials, namely samples with [0/90]2S uniaxial layer configuration and [0/90]2S twill fabric samples. Both types of tests were monitored using one wideband acoustic emission sensor, while the tensile tests of twill fabric samples were additionally supplemented with resonant acoustic emission sensor to perform a comparative analysis between datasets from resonant/wideband acoustic emission sensor. The comparative study itself was preceded by the failure mechanisms characterization process, which has been performed on the tensile test dataset of [0/90]2S layer configuration with the contribution of clustering technique. The subsequent analysis of the twill fabric resonant/wideband acoustic emission sensor datasets included the improved b-value technique, which relates the magnitude of fracture with the slope of the amplitude distribution. The presented results, especially in terms of the improved b-value technique applied to individual clusters, show enhanced ability to assess in more detail the actual structural integrity depending on the applied load.
Go to article

Authors and Affiliations

M. Šofer
1
ORCID: ORCID
P. Kwiatoń
2
ORCID: ORCID
P. Pavlíček
1
ORCID: ORCID

  1. VŠB-Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Applied Mechanics, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
  2. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Machine Design Fundamentals, 73 Dąbrowskiego Str., 42-201 Częstochowa, Poland

This page uses 'cookies'. Learn more