Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Blank handgun shots, party balloon bursts, and a pneumatic compressor with a small-diameter nozzle were used as sources of sound in the assessments of reverberation time, T. The two first sources were of impulse type, while the third one resembled a noise signal source. In this work, 532 values of T were experimentally obtained in four rooms of different volumes and compared. The T values for 1/3 octave frequency bands were found to be independent of the sound source. Reverberation times for the A-frequency-weighting filtered signals were close to one another for the shots and balloon bursts, while those obtained using the compressor nozzle were significantly shorter. The latter effect can be attributed to the relatively high share of high frequency waves in the sound generated by the nozzle. The results show that balloon bursts can be used as handgun shot substitutes in the assessments of reverberation times. While the nozzle noise is rather unsuitable for this purpose, it can be applied in the assessments of T for high frequency waves, up to the ultrasound range. Such acoustic climate information may be useful in designing spaces for high frequency sound-sensitive individuals, e.g. animal shelters.

Go to article

Authors and Affiliations

Piotr Szłapa
Marta Boroń
Jolanta Zachara
Wojciech Marczak
Download PDF Download RIS Download Bibtex

Abstract

Acoustic radiation sources are successfully applied to cleaning rooms from dust of fairly large particle sizes (ten micrometers and larger). The sedimentation of fine aerosols (particle diameter of 1-10 microns) is a more complicated challenge. The paper is devoted to the substantiation of the acoustic sedimentation method for such aerosols. On the basis of the mathematical model analysis for aerosol sedimentation by the acoustic field the mechanisms of this process have been determined and include the particle coagulation acceleration and radiation pressure effect. The experimental results of the acoustic sedimentation of a model aerosol (NaCl) are shown. The calculation results according to the mathematical model for coagulation and sedimentation, on the basis of the Smolukhovsky’s equation taking into account various mechanisms of aerosol sedimentation by sound depending on the particle sizes and sound intensity, are given. The necessity to use intensive sources of high-frequency sound has been confirmed, suggesting that these sources must be located above dust clouds.
Go to article

Authors and Affiliations

Olga Kudryashova
Alexandra Antonnikova
Natalya Korovina
Igor Akhmadeev

This page uses 'cookies'. Learn more