Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Kuroshio Extension front (KEF) considerably influences the underwater acoustic environment; however, a knowledge gap persists regarding the acoustic predictions under the ocean front environment. This study utilized the high-resolution ocean reanalysis data (JCOPE2M, 1993–2022) to assess the impact of the KEF on the underwater acoustic environment. Oceanographic factors were extracted from the database using the Douglas-Peucker algorithm, and acoustic propagation characteristics were obtained using the Bellhop raytracing model. This study employed a backpropagation neural network to predict the acoustic propagation affected by the KEF. The depth of the acoustic channel axis and the vertical gradient of the transition layer of sound speed were identified as the fundamental factors influencing the first area of convergence, with correlations between the former and the distance of the first convergence zone ranging from 0.52 to 0.82, and that for the latter ranging from −0.42 to −0.7. The proposed method demonstrated efficacy in forecasting first convergence zone distances, predicting distances with less than 3 km error in >90% of cases and less than 1 km error in 68.61% of cases. Thus, this study provides a valuable predictive tool for studying underwater acoustic propagation in ocean front environments and informs further research.
Go to article

Authors and Affiliations

Weishuai Xu
1
Lei Zhang
2
Hua Wang
2

  1. No. 5 Student Team, Dalian Naval Academy Dalian, Liaoning, China
  2. Department of Military Oceanography and Hydrography and Cartography Dalian Naval Academy Dalian, Liaoning, China
Download PDF Download RIS Download Bibtex

Abstract

It is essential for oceanographers to study the effects of marine phenomena such as currents, surface mixed layer, eddies, internal waves, and other ocean features on acoustic propagation, as most marine measurement equipment operates on this basis, like sonar. The eddy impact on acoustic transmission in the marine environment is very significant because changes in temperature and salinity disrupt the sound speed due to the presence of eddy, thus the acoustic propagation in the sea. Although cold eddies are in the Persian Gulf widely, one eddy is selected to study their impacts on acoustic propagation because they have similar properties in terms of temperature and salinity. In this research, after identifying eddies in the Persian Gulf automatically, the effect of a cold eddy on acoustic propagation was investigated at different depths using the BELLHOP model. Most eddies are cyclonic with 5–10 km of radius based on algorithm outputs. Studies on the lifespan of eddies showed that the occurrence of cyclonic eddies with a lifespan of more than three days is more than anticyclonic ones. Examination of the eddy effect on acoustic propagation showed that the transmission loss (TL) during the progress of the acoustic wave across the eddy increases with increasing the depth of the sound source. Also, the presence of cold eddy compared to the conditions it does not exist increases the transmission loss. The study of three-dimensional acoustic propagation also confirmed the obtained results in two-dimensional mode and clearly showed the role of cold eddy in increasing the TL.
Go to article

Authors and Affiliations

Omid Mahpeykar
1
Amir Ashtari Larki
1
Mohammad Akbari Nasab
2

  1. Department of Physical Oceanography, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
  2. Department of Marine Physics, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran

This page uses 'cookies'. Learn more