Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The church of Santa Ana in Moratalaz, Madrid, Spain (1965-1971), is an emblematic work of the architect Miguel Fisac. In his long career include interventions in the religious field, constituting one of the most important contributions to Spanish religious architecture of the last century. This church is a singular place of worship and architecturally significant, in which the acoustics played an important role in the configuration of the spatiality of the church. This paper studies the acoustic behaviour of the church and its relationship with its unique structural, spatial and coating material characteristics. The analysis of the current acoustic conditions, with high reverberation times (up to 6 seconds) and poor intelligibility on the audience, serve as the basis for making an acoustic rehabilitation proposal that contributes to improving the sound conditions of the building for the intended use, without distorting the spatial, formal and material aspects with which the architect conceived the project.

Go to article

Authors and Affiliations

Ana María Bueno
Ángel Luis León
Miguel Galindo
Download PDF Download RIS Download Bibtex

Abstract

In this work, simulation techniques have been implemented to study the sound fields of a multi-configurable performance enclosure by creating computer acoustic 3D-models for each room configuration. The digital models have been tuned by means of an iterative fitting procedure that uses the reverberation times measured on site for unoccupied conditions with the orchestra shell on the stage. The initial virtual acoustic model is validated by comparing the other monaural and binaural acoustic parameters measured in the room in terms of their perception differential threshold. The procedure is applied to the Maestranza Theatre of Seville, built for the Universal Exhibition in 1992. The spatial distribution of the acoustic parameters in the audience area of the venue by measured parameters and simulation mappings enables the establishment of three zones of acoustic comfort, and are corroborated by the values of the Ando-Beranek function which provide a global quality coefficient of each zone.

Go to article

Authors and Affiliations

Pedro Bustamante
Sara Girón
Teófilo Zamarreño
Download PDF Download RIS Download Bibtex

Abstract

Listening tests have been carried out to quantify the significance of binaural auralization over monaural auralization in accordance with the acoustic properties of the enclosure. To this end, acoustic rendering of three different rooms were generated based on synthesized monaural (two channels with the same audio material) and binaural room impulse responses. The auralizations were evaluated by means of subjective tests using headphones with non-individualized equalization. Parameters, such as localization, spatial impression and realism, were taken into consideration to determine the relevance of providing binaural information for the auralization of a given room. The analysis of the data has been conducted following a statistical approach based on ANOVA and Pearson correlation. The results indicate that spatial perception is strongly dependent on the acoustic characteristics of the rooms and on the listening condition of the audio material. Furthermore, as expected, advantages of binaural rendering in terms of source localization was also confirmed.

Go to article

Authors and Affiliations

Alicia Alonso
Diego Mauricio Murillo-Gómez
Download PDF Download RIS Download Bibtex

Abstract

The church of Santa Cruz de Oleiros, Spain (1967) shows architect Miguel Fisac’s perception of sacred space after the Second Vatican Council. In this place of worship, the architect responded to the new liturgical guidelines combining geometry and architectural forms with the material of the moment, concrete. However, ordinary religious celebrations reveal acoustic deficiencies for the main use of the building. This fact is corroborated by acoustic measurements in situ. With a methodology that uses simulation techniques for the sound field, the analysis of the current acoustic behaviour of the room will serve as the basis for an acoustic rehabilitation proposal aimed at improving the acoustic conditions and so, the functionality of the church.
Go to article

Authors and Affiliations

Ana María Bueno
Miquel Galindo
León Ángel Luis
Download PDF Download RIS Download Bibtex

Abstract

In parallel with research conducted using conventional methods, a uniform index method for assessing the acoustic quality of Roman Catholic churches has been developed. The latest version of the index method has been created using the index observation matrix of 12 churches which have been rated by means of the single number global index.

Assessments of the acoustic quality of any Roman Catholic church, using two calculation models: the Global Acoustic Properties Index (GAP) and the Global Index (GI), are shown in the article. The verification was performed on the example of one church, showing the way of calculating global indices to assess the acoustic quality of a new facility. The next stages in the development of the index method for assessing the acoustic quality of churches were taking into account the audience, using simulation tests and determining the spatial distribution of the single number GAP index in an examined church. An attempt to use the GAP and GI calculation models to assess the acoustic properties of some churches is also shown in the article.

Go to article

Authors and Affiliations

Krzysztof Kosała
Download PDF Download RIS Download Bibtex

Abstract

Mosques are Islamic places of worship where speech and music rituals are performed. Since two different languages are spoken there, mosques are described as bilingual spaces. Among studies on the complex acoustic structure of mosques there are only few studies on speech intelligibility and none on the bilingual characteristics of the mosque. Therefore, a comprehensive study has been carried out to evaluate the acoustic comfort of the contemporary Turkish mosques (CTM) over speech intelligibility of Turkish and Arabic languages. In the study the CTM model providing optimum acoustic conditions recommended in the literature is examined on speech intelligibility by applying acoustic simulation and auralisation techniques, as well as word recognition tests. As a result, the acoustic condition in the model is found insufficient in terms of speech intelligibility of both languages. Also, with the decrease of Signal-to-Noise Ratio (SNR), the Turkish intelligibility ratio is observed to decrease at least two times faster than the Arabic ones.
This study is viewed as an outline for researchers to further study mosque acoustics in terms of speech intelligibility, and thus support the standardisation process of the acoustic comfort criteria for the mosques.
Go to article

Bibliography

1. Abdou A.A. (2003), Measurement of acoustical characteristics of mosques in Saudi Arabia, The Journal of the Acoustical Society of America, 113(3): 1505–1517, doi: 10.1121/1.1531982.
2. Ahmad Y., Din N.C., Othman R. (2013), Mihrab design and its basic acoustical characteristics of traditional vernacular mosques in Malaysia, Journal of Building Performance, 4(1): 44–51, http://spaj.ukm.my/ jsb/index.php/jbp/article/view/79.
3. Akın A. (2016), An essay about the function of mosques throughout the history [in Turkish: Tarihi Süreç Içinde Cami ve Fonksiyonlari Üzerine Bir Deneme], Hitit Üniversitesi Ilahiyat Fakültesi Dergisi, 15(29): 179–211.
4. Alic E. (2019), A study on speech intelligibility of mosque over Turkish and Arabic language [in Turkish: Camilerde Konusma Anlasilabilirliginin Türkçe ve Arapça Dilleri Üzerinden Incelenmesi], Master Thesis, Eskisehir Technical University.
5. Alic E., Ozcevik Bilen A. (2019), Determination of the characteristics of contemporary Turkish mosque and its acoustical properties, Proceedings of the 23rd International Congress on Acoustics, pp. 3989–3990, Aachen, Germany.
6. Alusi H.A., Hinchcliffe R., Ingham B., Knight J.J., North C. (1974), Arabic speech audiometry, International Journal of Audiology, 13(3): 212–230.
7. ANSI/ASA S3.2. (2009), Method for measuring the intelligibility of speech over communication systems, American National Standards Institute.
8. Audio Check (n.d.), Online audiogram hearing test, retrieved April 4, 2019, from https://www.audio check.net/testtones_hearingtestaudiogram.php.
9. Aydın T. (2010), The letters in Arabic and Turkish – contrastive analysi [in Turkish: Arapça ve Türkçe’de Sesler – Karsıtsal Çözümleme], EKEV Akademi Dergisi, pp. 321–334.
10. Baktır M. (n.d.), Khutbah [in Turkish: Hutbe], detrieved March 11, 2019, from Turkiye Diyanet Foundation, Encyclopaedia of Islam, https://islamansiklopedisi.org.tr/hutbe.
11. Bilingualism (n.d.), [in:] Cambridge Dictionary, retrieved November 15, 2019, from https://dictionary.cambridge.org/dictionary/english/bilingualism.
12. Bobran H.W. (1973), ABC of sound and heat protection technolog [in German: ABC der Schallund Wärmeschutztechnik: Eine Zusammenstellung der wichtigsten Begriffe des Schallschutzes, der Raumakustik und der Bauphysik. Mit Stoffwerten Konstruktionsdetails, Markennamen-Erläuterung gen sowie umfassendem Firmenverzeichnis], ABC-Redaktion.
13. Bradley J.S. (1986), Predictors of speech ıntelligibility in rooms, The Journal of the Acoustical Society of America, 80(3): 837–845, doi: 10.1121/1.393907.
14. BS 8233 (1999), Sound insulation and noise reduction for buildings – Code of Practice, London, UK.: British Standards Institution.
15. BS EN 60268-16 (2011), Sound system equipment – Part 16: Objective rating of speech intelligibility by speech transmission index, London, UK: British Standard Institute.
16. BS EN ISO 9921 (2003), Ergonomics – Assessment of Speech Communication, British Standards Institution, London, UK.
17. Carvalho A., Freitas C. (2011), Acoustical characterization of the central mosque of Lisbon, Forum Acusticum 2011.
18. ÇGDYY (2010), Environmental Noise Assessment and Management Regulation [in Turkish: Çevresel Gürültünün Degerlendirilmesi ve Yonetimi Yonetmeligi (2002/49/EC)], TC Çevre ve Orman Bakanlıgı, Resmi Gazete.
19. Cirit H. (n.d.), Sermon, [in Turkish: Vaaz], retrieved October 1, 2018, from Turkiye Diyanet Foundation, Encyclopaedia of Islam, https://islamansiklope disi.org.tr/vaaz#.
20. Elkhateeb A., Adas A., Atilla M., Balia Y. (2016), The acoustics of Masjids, looking for future design criteria, [in:] The 23rd International Congress on Sound and Vibration, pp. 10–14, Greece.
21. Erdem A. (1992), A Study on the acoustic characteristics of the Muradiye mosque [in Turkish: Muradiye camii’nin akustik karakteristikleri üzerine bir arastırma], Edirne: Doctoral Thesis, Trakya University.
22. Ez-Züvey A., Hanay N. (2013), The founder of the sound science El-Halil B. AHMED [in Turkish: Ses Bilimin Kurucusu El-Halil B. AHMED], Recep Tayyip Erdogan Üniversitesi Ilahiyat Fakültesi Dergisi, 4: 195– 227.
23. Fischer S.R. (2015), History of language [in Turkish: Dilin tarihi], trans. M. Güvenç, Kültür yayınevi. 24. Güler E., Hengirmen M. (2005), Sound science and diction [in Turkish: Ses bilimi ve diksiyon], Engin yayin evi.
25. Hafizah D., Putra A., Noor M.J., Py M.S. (2015), Double layered micro perforated panel as acoustic absorber in mosque, Proceedings of Mechanical Engineering Research Day, pp. 103–104.
26. Harris C.M. (1991), Handbook of Acoustical Measurements and Noise Control, McGraw-Hill.
27. Houtgast T., Steeneken H. (1984), A multilanguage evaluation of the RASTI-method for estimating speech intelligibility in auditoria, Acta Acustica united with Acustica, 54(4): 185–199.
28. Ismail M.R. (2013), A parametric investigation of the acoustical performance of contemporary mosques, Frontiers of Architectural Research, 2(1): 30–41, doi: 10.1016/j.foar.2012.11.002.
29. Karabiber Z. (2000), New Approach to an Ancient Subject: CAHRISMA Project, Proceedings of the 7th ICSV Conference.
30. Karabiber Z., Erdogan S. (2002), Comparison of the acoustical properties of an ancient and recent mosque, Forum Acusticum.
31. Kavraz M. (2014), The acoustic characteristics of the Çarsı Mosque in Trabzon, Turkey, Indoor and Built Environment, 25(1): 128–136, doi: 10.1177/1420 326X14541138.
32. Kayılı M. (1988), Evaluation of acoustic data in Mimar Sinan’s Mosques, Chief Architect Koca Sinan: His Age and Works [in Turkish: Mimar Sinan’ın Camilerindeki Akustik Verilerin Degerlendirilmesi, Mimarbası Koca Sinan: Yasadıgı Çag ve Eserleri], T.C. Basbakanlık Vakıflar Genel Müdürlügü, Istanbul, pp. 545–555.
33. Kayili M. (2005), Acoustic Solutions in classic Ottoman architecture, Foundation for Science, Technology and Civilisation, Publication ID: 4087.
34. Kılıncarslan A.S. (1986), Standardization of phonetically balanced monosyllabic word lists developed for the Turkish language [in Turkish: Türk Diliiçin Gelistirilmis Fonetik Dengeli Tek Heceli Kelime Listelerinin Standardizasyonu], Master Thesis, Hacettepe University, Ankara.
35. Kitapçı K. (2016), Speech ıntelligibility in multilingual spaces, Doctoral Thesis, Heriot-Watt University. 36. Kitapçi K., Galbrun L. (2014), Comparison of speech intelligibility between English, Polish, Arabic and Mandarin, Proceeding of Forum Acusticum, Krakow, Poland.
37. Kuttruff H. (2009), Room Acoustics, 5th ed., CRC Press.
38. Long M. (2006), Architectural Acoustics, Elsevier Academic Press.
39. ODEON, (2015), Odeon Application Note – Auralisation and how to calibrate the sound level for presentations, JHR.
40. Orfali W.A. (2007), Sound parameters in mosque, Proceedings of Meeting on Acoustics, 1(1): 035001, doi: 10.1121/1.2829306.
41. Parkin P.H., Cowell J.R., Humphreys H.R. (1979), Acoustics, Noise, and Buildings, 4th ed., Faber and Faber: Boston MA.
42. Pilancı H. (2011), Turkish phonetics [in Turkish: Türkçe ses bilgisi], Anadolu Üniversitesi basımevi.
43. Presidency of Religious Affairs (2016), 2016 4-B Contracted Islamic Preacher Recruitment (SÖZPER-2016- III) [in Turkish: 2016 Yılı 4-B Sözlesmeli Imam-Hatip Alımı (SÖZPER-2016-III)], Retrieved November 15, 2019, from https://insankaynaklari.diyanet.gov.tr/De tay/315/2016-y%C4%B1l%C4%B1-4-b-s%C3%B6zle %C5%9Fmeli-imam-hatip-al%C4%B1m%C4%B1-(s% C3%B6zper-2016-%C4%B1%C4%B1%C4%B1.
44. Prodi N., Marsilio M. (2003), On the effect of domed ceiling in worship spaces: a scale model study of a mosque, Building Acoustics, 10(2): 117–134, doi: 10.1260/135101003768965979.
Go to article

Authors and Affiliations

Elma Alic
1
Asli Ozcevik Bilen
1

  1. Department of Architecture, Eskisehir Technical University, Eskisehir, Turkey

This page uses 'cookies'. Learn more