Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper includes a summary of long-time research conducted by a research team in the Institute of Electrical Engineering and Computer Science at Silesian University of Technology. The research work has principally been related to selected problems in the field of analysis and synthesis of systems aimed at symmetrisation and improvement of some power quality parameters. This paper constitutes the second part of the report on the research. It has been devoted to three-phase system symmetrisation as well as effective elimination of higher harmonics and substantial improvement of power quality by means of hybrid active power filters.

Go to article

Authors and Affiliations

Marian Pasko
Dawid Buła
Krzysztof Dębowski
Dariusz Grabowski
Marcin Maciążek
Download PDF Download RIS Download Bibtex

Abstract

The paper includes a summary and a background of long-time research conducted by a research team in the Institute of Electrical Engineering and Computer Science at SilesianUniversity of Technology. The researchwork has principally been related to selected problems in the field of analysis and synthesis of systems aimed at symmetrisation and improvement of some power quality parameters. This paper constitutes a first part of the report on the research. It has been devoted to effective elimination of higher harmonics and reactive power compensation by means of parallel active power filters. The other problem discussed in this paper is related to this issue and it is very important from the economic point of view; it addresses optimal sizing and placement of active power filters in investigated power networks.

Go to article

Authors and Affiliations

Marian Pasko
Dawid Buła
Krzysztof Dębowski
Dariusz Grabowski
Marcin Maciążek
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a concept of a shunt active power filter, which is able to provide more precise mapping of its input current drawn from a power line in a reference signal, as compared to a typical filter solution. It can be achieved by means of an interconnection of two separate power electronics converters making, as a whole, a controlled current source, which mainly determines the quality of the shunt active filter operation. One of these power devices, the “auxiliary converter”, corrects the total output current, being a sum of output currents of both converters, toward the reference signal. The rated output power of the auxiliary converter is much lower than the output power of the main one, while its frequency response is extended. Thanks to both these properties and the operation of the auxiliary converter in a continuous mode, pulse modulation components in the filter input current are minimized. Benefits of the filter are paid for by a relatively small increase in the complexity and cost of the system. The proposed solution can be especially attractive for devices with higher output power, where, due to dynamic power loss in power switches, a pulse modulation carrier frequency must be lowered, leading to the limitation of the “frequency response” of the converter. The concept of such a system was called the “hybrid converter topology”. In the first part of the paper, the rules of operation of the active filter based on this topology are presented. Also, the results of comparative studies of filter simulation models based on both typical, i.e. single converter, and hybrid converter topologies, are discussed.
Go to article

Bibliography

  1.  B. Kroposki, C. Pink, R. DeBlasio, H. Thomas, M. Simões, and P. Sen, “Benefits of Power Electronic Interfaces for Distributed Energy Systems”, IEEE Trans. Energy Convers. 25, 901–908 (2010).
  2.  M. Pasko, D. Buła, K. Dębowski, D. Grabowski, and M. Maciążek, “Selected methods for improving operating conditions of three-phase systems working in the presence of current and voltage deformation — Part I”, Arch. .Electr. Eng. 67, 591–602 (2018).
  3.  A. Benchabira and M. Khiat, “A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network”, Arch. Electr. Eng. 68, 535–551 (2019).
  4.  A. Nami, J.L. Rodríguez Amenedo, S. Arnaltes Gómez, and M.Á. Cardiel Álvarez, “Active power filtering embedded in the frequency control of an offshore wind farm connected to a diode-rectifier-based HVDC link”, Energies 11, 2718 (2018).
  5.  A.J. Christe, S. Negrashov, and P.M. Johnson, “Design, implementation, and evaluation of open power quality”, Energies 13, 4032 (2020).
  6.  B. Lewczuk, G. Redlarski, A. Zak, N. Ziółkowska, B. Przybylska-Gornowicz, and M. Krawczuk, “Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge”, in BioMed Research International 2014, 2014, pp. 1–13.
  7.  M. Siwczyński and M. Jaraczewski, “Reactive compensator synthesis in time-domain”, Bull. Pol. Ac.: Tech. 60(1), 119–124 (2012).
  8.  Y. Chen, Z. Huang, Z. Duan, P. Fu, G. Zhou, and L. Luo, “A four-winding inductive filtering transformer to enhance power quality in a high-voltage distribution network supplying nonlinear loads”, Energies 12, 2021 (2019).
  9.  Y. Rozanov, S. Ryvkin, E. Chaplygin, and P. Voronin, Fundamentals of power electronics: operating principles, design, formulas, and applications, CRC Press, 2015.
  10.  M. Rashid, Power Electronics Handbook, Elsevier Ltd.: Oxford, 2018.
  11.  K. Shyu, M. Yang, Y. Chen, and Y. Lin, “Model Reference Adaptive Control Design for a Shunt Active-Power-Filter System”, IEEE Trans. Ind. Electron.55, 97–106 (2008).
  12.  A. Kouzou, M. Mahmoudi, and M. Boucherit, “Evaluation of the Shunt Active Power Filter apparent power ratio using particle swarm optimization”, Arch. Control Sci. 20, 47–76 (2010).
  13.  K. Mikołajuk and A. Toboła, “Average time–varying models of active power filters”, Prz. Elektrotechniczny 95, 53–55 (2010).
  14.  M. Gwóźdź, “Power electronics active shunt filter with controlled dynamics”, Compel-Int. J. Comp. Math. Electr. Electron. Eng. 32, 1337–1344 (2013).
  15.  S. Fryze, “Active, reactive, and apparent power in circuits with nonsinusoidal voltage and current”, Prz. Elektrotechniczny 13, 193–203 (1931).
  16.  M. Artemenko, L. Batrak, and S. Polishchuk, “New definition formulas for apparent power and active current of three-phase power system”, Prz. Elektrotechniczny 95, 81–85 (2019).
  17.  H. Akagi, “Modern active filters and traditional passive filters”, Bull. Pol. Ac.: Tech. 54(3), 255–269 (2006).
  18.  H. Akagi, E. Watanabe, and M. Aredes, Instantaneous power theory and applications to power conditioning, IEEE Press, Hoboken: Piscataway, 2017.
  19.  L. Czarnecki, “Effect of Supply Voltage Harmonics on IRP-Based Switching Compensator Control”, IEEE Trans. Power Electron. 24, 483–488 (2009).
  20.  J. Vásárhelyi, M. Imecs, C. Szabó, I. Incze, and Á. Tihamér, “Managing transients generated by the reconfiguration process at the tandem inverter fed induction motor”, Proceedings of IEEE 7th International Conference on Intelligent Engineering Systems, 2003, pp. 388–393.
  21.  K. Kaneko, J. Mitsuta, K. Matsuse, K. Sasagawa, Y. Abe, and L. Huang, “Analysis of dynamic variation on a combined control strategy for a five-level double converter”, Proceedings of Power Electronics Specialists Conference PESC ’05, 2005, pp. 885–891.
  22.  M. Imecs, A. Trzynadlowski, I. Incze, and C. Szabo, “Vector Control Schemes for Tandem-Converter Fed Induction Motor Drives”, IEEE Trans. Power Electron. 20, 493–501 (2005).
  23.  T. Morizane and N. Kimura, “Circulating current control of double converter system for wind power generation”, Proceedings of the 14th European Conference on Power Electronics and Applications (EPE 2011), 2011.
  24.  A. Tomaszuk and A. Krupa, “High efficiency high step-up DC/ DC converters – a review”, Bull. Pol. Ac.: Tech. 59(4), 475–483 (2011).
  25.  M. Gwóźdź, Ł. Ciepliński, and M. Krystkowiak, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter — Part 1”, Bull. Pol. Ac.: Tech. 68(3), 401–408 (2020).
  26.  X. Rui, L. Jing, L. Fuzhong, and W. Zhi, “The application on active noise cancellation — Research on the series-parallel compensated UPS converter”, International Symposium on Electromagnetic Compatibility EMC 2007, China, 2007, pp.138–141.
  27.  L. Asiminoaei, E. Aeloiza, P. Enjeti, and F. Blaabjerg, “Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters”, IEEE Trans. Ind. Electron. 55, 1175–1189 (2008).
  28.  G. Eirea and S. Sanders, “Phase Current Unbalance Estimation in Multiphase Buck Converters”, IEEE Trans. Power Electron. 23, 137–143 (2008).
  29.  M. Hirakawa, M. Nagano, Y. Watanabe, K. Ando, S. Nakatomi, S. Hashino, and T. Shimizu, “High power density interleaved dc/dc converter using a 3-phase integrated close-coupled inductor set aimed for electric vehicles”, Proceedings of Energy Conversion Congress and Exposition (ECCE) 2010, 2010, pp. 2451–2457.
  30.  J. Iwaszkiewicz, P. Bogusławski, A. Krahel, and E. Łowiec, “Three-phase voltage outages compensator with cascaded multilevel converter”, Arch. Electr. Eng. 61, 325–336 (2012).
  31.  J. Wu, H. Jou, P. Huang, and I. Chiu, “Current balancing control for an interleaved boost power converter”, Int. J. .Electron. 106, 1567–1582 (2019).
  32.  M. Schetzen, Linear time-invariant systems, Wiley-IEEE Press, 2003.
  33.  M. Gwóźdź, “Stability of discrete time systems on base of generalized sampling expansion”, Elektryka, Silesian University of Technology 57, 29–40 (2011).
  34.  J. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory, Dover Publications, 2013.
  35.  Y. Hasegawa, Control Problems of Discrete-Time Dynamical Systems, Springer, 2015.
  36.  W. Kester, The Data Conversion Handbook, Analog Devices Inc, Newnes, 2005.
  37.  J. de la Rosa, “Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey”, IEEE Trans. Circuits Syst. I-Regul. Pap. 58, 1–21 (2011).
  38.  A. Jain, M. Venkatesan, and S. Pavan, “Analysis and Design of a High Speed Continuous-time Delta Sigma Modulator Using the Assisted Opamp Technique”, IEEE J. Solid-State Circuit. 47, 1615–1625 (2012).
  39.  B. Razavi, “The Delta-Sigma Modulator [A Circuit for All Seasons]”, IEEE Solid-State Circuit. Mag. 8, 10–15 (2016).
  40.  M. Gwozdz and D. Matecki, “Power electronics inverter with a modified sigma-delta modulator and an output stage based on GaN E-HEMTs”, in Advanced Control of Electrical Drives and Power Electronic Converters, pp. 327–338 Springer, London, 2017.
  41.  J. Chen, Y. Hwang, C. Jheng, Y. Ku, and C. Yu, “A Low-Electromagnetic-Interference Buck Converter with Continuous-Time Delta- Sigma-Modulation and Burst-Mode Techniques”, IEEE Trans. Ind. Electron. 65, 6860–6869 (2018).
  42.  D. Gerber, C. Le, M. Kline, P. Kinget, and S. Sanders, “An Integrated Multilevel Converter with Sigma–Delta Control for LED Lighting”, IEEE Trans. Power Electron. 34, 3030–3040 (2019).
  43.  B. Jacob and M. Baiju, “Space-Vector-Quantized Dithered Sigma–Delta Modulator for Reducing the Harmonic Noise in Multilevel Converters”, IEEE Trans. Ind. Electron. 62, 2064–2072 (2015).
  44.  C. Chang, F. Wu, and Y. Chen, “Modularized Bidirectional Grid-Connected Inverter with Constant-Frequency Asynchronous Sigma-Delta Modulation”, IEEE Trans. Ind. Electron. 59, 4088–4100 (2012).
  45.  B. Wilamowski and J. Irwin, Fundamentals of Industrial Electronics, CRC Press: London, United Kingdom, 2017.
  46.  Y. Kang, T. Ge, H. He, and J. Chang, “A review of audio class D amplifiers”, 2016 International Symposium on Integrated Circuits (ISIC), Singapore, 12–14 (2016).
  47.  X. Jiang, “Fundamentals of Audio Class D Amplifier Design: A Review of Schemes and Architectures”, IEEE Solid-State Circuits Magazine 9, 14–25 (2017).
  48.  G. Scott, “Design Considerations for Class-D Audio Power Amplifiers”, in Application Report (SLOA242A), Texas Instruments, 2019.
  49.  A. Chatterjee, H. Nobahari, and P. Siarry, Advances in Heuristic Signal Processing and Applications, Springer: Berlin, Heidelberg, 2013.
  50.  H. Zhang, C. Qin, and Y. Luo, “Neural-Network-Based Constrained Optimal Control Scheme for Discrete-Time Switched Nonlinear System Using Dual Heuristic Programming”, IEEE Trans. Autom. Sci. Eng. 11, 839–849 (2014).
  51.  R. Kirlin, C. Lascu, and A. Trzynadlowski, “Shaping the Noise Spectrum in Power Electronic Converters”, IEEE Trans. Ind. Electron. 58, 2780–2788 (2011).
  52.  M. Auer and T. Karaca, “Spread spectrum techniques for Class-D audio amplifiers to reduce EMI”, e & i Elektrotechnik und Informationstechnik 133, 43–47 (2016).
  53.  MITSUBISHI ELECTRIC Semiconductors & Devices: Power Modules for Power Applications | Power supply / UPS. [Online]. https:// www.mitsubishielectric.com/semiconductors/application/ups/index.html (accessed Aug. 11 2020).
  54.  Silicon Carbide CoolSiC™ MOSFET Modules – Infineon Technologies. [Online] https://www.infineon.com/cms/en/product/power/mosfet/ silicon-carbide/modules/ (accessed Aug. 11 2020).
Go to article

Authors and Affiliations

Michał Gwóźdź
1
ORCID: ORCID
Łukasz Ciepliński
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents selected static characteristics of a parallel active filter with voltage control in the supply line (VPAPF – Voltage-controlled Active Power Filter) as a function of parameters of the supply network. The tests were done on the basis of a simulation model of the supply network and an appropriate compensator. The test results showed that VPAPFs are most suitable for operation in weak networks, maintaining an almost constant level of voltage distortion, regardless of the value of the network impedance. In addition, the influence of the parameter G corresponding to the conductance value suppressing higher harmonics of the network voltage on the operation of the active power filter was determined.
Go to article

Authors and Affiliations

Piotr Grugel
1
ORCID: ORCID
Jan Mućko
1
ORCID: ORCID

  1. Institute of Electrical Engineering, Bydgoszcz University of Science and Technology Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz

This page uses 'cookies'. Learn more