Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In times of the COVID-19, reliable tools to simulate the airborne pathogens causing the infection are extremely important to enable the testing of various preventive methods. Advection-diffusion simulations can model the propagation of pathogens in the air. We can represent the concentration of pathogens in the air by “contamination” propagating from the source, by the mechanisms of advection (representing air movement) and diffusion (representing the spontaneous propagation of pathogen particles in the air). The three-dimensional time-dependent advection-diffusion equation is difficult to simulate due to the high computational cost and instabilities of the numerical methods. In this paper, we present alternating directions implicit isogeometric analysis simulations of the three-dimensional advection-diffusion equations. We introduce three intermediate time steps, where in the differential operator, we separate the derivatives concerning particular spatial directions. We provide a mathematical analysis of the numerical stability of the method. We show well-posedness of each time step formulation, under the assumption of a particular time step size. We utilize the tensor products of one-dimensional B-spline basis functions over the three-dimensional cube shape domain for the spatial discretization. The alternating direction solver is implemented in C++ and parallelized using the GALOIS framework for multi-core processors. We run the simulations within 120 minutes on a laptop equipped with i7 6700 Q processor 2.6 GHz (8 cores with HT) and 16 GB of RAM.
Go to article

Bibliography

  1.  “Coronavirus disease (COVID-19): How is it transmitted?”. [Online] Available: https://www.who.int/emergencies/diseases/novel- coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-how-is-covid-19-transmitted.
  2.  D.W. Peaceman and H.H. Rachford Jr., “The numerical solution of parabolic and elliptic differential equations’’, J. Soc. Ind. Appl. Math., vol. 3, no. 1, pp. 28‒41, 1955.
  3.  J. Douglasand and H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables’’, Trans. Am. Math. Soc., vol. 82, no. 2, pp. 421‒439, 1956.
  4.  E.L. Wachspress and G. Habetler, “An alternating-direction-implicit iteration technique’’, J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 403‒423, 1960.
  5.  G. Birkhoff, R.S. Varga, and D. Young, “Alternating direction implicit methods’’, Adv. Comput., vol. 3, pp. 189‒273, 1962.
  6.  J.L. Guermond and P. Minev, “A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting’’, C.R. Math., vol. 348, pp. 581‒585, 2010.
  7.  J.L. Guermond, P. Minev, and J. Shen, “An overview of projection methods for incompressible flows’’, Comput. Methods Appl. Mech. Eng., vol. 195, pp. 6011‒6054, 2006.
  8.  J.A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Unification of CAD and FEA, John Wiley and Sons, 2009.
  9.  M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis’’, Comput. Fluids, vol. 49, pp. 93‒100, 2011.
  10.  K. Chang, T.J.R. Hughes, and V.M. Calo, “Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall’’, Comput. Fluids, vol. 68, pp. 94‒104, 2012.
  11.  L. Dedè, T.J.R. Hughes, S. Lipton, and V.M. Calo, “Structural topology optimization with isogeometric analysis in a phase field approach’’, USNCTAM2010, 16th US National Congree of Theoretical and Applied Mechanics, 2010.
  12.  L. Dedè, M.J. Borden, and T.J.R. Hughes, “Isogeometric analysis for topology optimization with a phase field model’’, Arch. Comput. Methods Eng., vol. 19, pp. 427‒465, 2012.
  13.  H. Gómez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes, “Isogeometric analysis of the {Cahn-Hilliard} phase-field model’’, Comput. Methods Appl. Mech. Eng., vol. 197, pp. 4333‒4352, 2008.
  14.  H. Gómez, T.J.R. Hughes, X. Nogueira, and V.M. Calo, “Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations’’, Comput. Methods Appl. Mech. Eng., vol. 199, pp. 1828‒1840, 2010.
  15.  R. Duddu, L. Lavier, T.J.R. Hughes, and V.M. Calo, “A finite strain Eulerian formulation for compressible and nearly incompressible hyper-elasticity using high-order NURBS elements’’, Int. J. Numer. Methods Eng., vol. 89, pp. 762‒785, 2012.
  16.  S. Hossain, S.F.A. Hossainy, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes, “Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls’’, Comput. Mech., vol. 49, pp. 213‒242, 2012.
  17.  Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid-structure interaction analysis with applications to arterial blood flow’’, Comput. Mech., vol. 38, pp. 310‒322, 2006.
  18.  Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows’’, Comput. Methods Appl. Mech. Eng., vol. 197, pp. 173‒201, 2007.
  19.  V.M. Calo, N. Brasher, Y. Bazilevs, and T.J.R. Hughes, “Multiphysics Model for Blood Flow and Drug Transport with Application to Patient-Specific Coronary Artery Flow’’, Comput. Mech., vol. 43, pp. 161‒177, 2008.
  20.  M. Łoś, M. Paszyński, A. Kłusek, and W. Dzwinel, “Application of fast isogeometric L2 projection solver for tumor growth simulations’’, Comput. Methods Appl. Mech. Eng., vol. 316, pp. 1257‒1269, 2017.
  21.  M. Łoś, A. Kłusek, M. Amber Hassam, K. Pingali, W. Dzwinel, and M. Paszyński, “Parallel fast isogeometric L2 projection solver with GALOIS system for 3D tumor growth simulations’’, Comput. Methods Appl. Mech. Eng., vol. 343, pp. 1‒22, 2019.
  22.  A. Paszyńska, K. Jopek. M. Woźniak, and M. Paszyński, “Heuristic algorithm to predict the location of C0 separators for efficient isogeometric analysis simulations with direct solvers’’, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 907‒917, 2018.
  23.  L. Gao and V.M. Calo, “Fast Isogeometric Solvers for Explicit Dynamics’’, Comput. Methods Appl. Mech. Eng., vol. 274, pp. 19‒41, 2014.
  24.  L. Gao and V.M. Calo, “Preconditioners based on the alternating-direction-implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients’’, J. Comput. Appl. Math., vol. 273, pp. 274‒295, 2015.
  25.  L. Gao, “Kronecker Products on Preconditioning’’, PhD. Thesis, King Abdullah University of Science and Technology, 2013.
  26.  M. Łoś, M. Woźniak, M. Paszyński, L. Dalcin, and V.M. Calo, “Dynamics with Matrices Possessing Kronecker Product Structure’’, Procedia Comput. Sci., vol. 51, pp. 286‒295, 2015.
  27.  M. Woźniak, M. Łoś, M. Paszyński, L. Dalcin, and V. Calo, “Parallel fast isogeometric solvers for explicit dynamics’’, Comput. Inform., vol. 36, no. 2, pp. 423‒448, 2017.
  28.  M. Łoś, M. Woźniak, M. Paszyński, A. Lenharth, and K. Pingali, “IGA-ADS : Isogeometric Analysis FEM using ADS solver’’, Comput. Phys. Commun., vol. 217, pp. 99‒116, 2017.
  29.  G. Gurgul, M. Woźniak, M. Łoś, D. Szeliga, and M. Paszyński, “Open source JAVA implementation of the parallel multi-thread alternating direction isogeometric L2 projections solver for material science simulations’’ Comput. Methods Mater. Sci., vol. 17, no.1, pp. 1‒11, 2017.
  30.  M. Łoś, J. Munoz-Matute, K. Podsiadło, M. Paszyński, and K. Pingali, “Parallel shared-memory isogeometric residual minimization (iGRM) for three-dimensional advection-diffusion problems’’, Lect. Notes Comput. Sci., vol. 12143, pp. 133‒148, 2020.
  31.  A. Alonso, R. Loredana Trotta, and A. Valli, “Coercive domain decomposition algorithms for advection-diffusion equations and systems’’, J. Comput. Appl. Math., vol. 96, no. 1, pp. 51‒76, 1998.
  32.  K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M.A. Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Mendez-Lojo, D. Prountzos, and X. Sui, “The tao of parallelism in algorithms’’, SIGPLAN, vol. 46, 2011, doi: 10.1145/1993316. 1993501.
  33.  A. Takhirov, R. Frolov, and P. Minev, “Direction splitting scheme for Navier-Stokes-Boussinesq system in spherical shell geometries’’, arXiv:1905.02300, 2019.
Go to article

Authors and Affiliations

Marcin Łoś
1
ORCID: ORCID
Maciej Woźniak
1
ORCID: ORCID
Ignacio Muga
2
ORCID: ORCID
Maciej Paszynski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile

This page uses 'cookies'. Learn more