Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Lakes can be restored by the aeration method with the use of wind driven pulverising aerators. The method allows for moderate oxygenation of hypolimnion waters and it may be part of an integrated surface waters restoration system. The paper attempts to use the author’s method of maximum wind speeds to assess the volumetric flow of water through the aerator pulverisation mechanism. The study was conducted in 2018 in windy conditions of Lake Swarzędzkie. The introduction to the paper includes the characteristic of the lake and discusses the construction and operation of the wind driven pulverising aerator. Based on the maximum wind speed model, the theoretical capacity of the machine was calculated, which in the conditions of Lake Swarzędzkie was less than 111,500 m3 per year. Based on maximum wind speeds, the method of assessing the efficiency of the wind driven pulverising aerator is suitable for determining the volumetric flow rate of the pulverisation unit. This can significantly facilitate the planning of water reservoir restoration.
Go to article

Authors and Affiliations

Andrzej Osuch
1
ORCID: ORCID
Ewa Osuch
1
ORCID: ORCID
Piotr Rybacki
2
ORCID: ORCID
Marcin Herkowiak
3
ORCID: ORCID
Emilia Osuch
4

  1. Poznań University of Life Sciences, Department of Biosystems Engineering, 50 Wojska Polskiego St., 60-637 Poznań, Poland
  2. Poznań University of Life Sciences, Department of Agronomy, Poznań, Poland
  3. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  4. Vocational School Complex No 6, names Joachim Lelewel in Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to develop a mathematical model using equations of fluid mechanics that describe the dynamics of air flow in a part of the compost aerating system integrated with a stationary reactor. The results of the simulation show that adjusting the flow resistance along the entire length of the compost aerating duct, depending on the distance from the connection of the duct with the fan's pressure conduit pipe through gradually increasing the air outflow area by increasing the number of repeatable gaps, yields a uniform pressure distribution above the grate. The process parameters used for computation were relevant to composting a subscreen fraction separated from mixed municipal waste using 80 mm mesh screen (Fr<80 mm) under real conditions. Microsoft EXCEL 2010 software and STATISTICA version 13.3 by StatSoft were used for numerical and statistical analysis of the test results. The research results are presented in four tables and five figures and discussed in the text of the article. During tests performed in real conditions, various variants were tested for reactor filling level and air outflow active surfaces in subsequent grate parts (Fc (i)). It was found that the target waste layer thickness i.e. 3.0 m and Fc (i) changes, in accordance with the values of the developed model, result in a stable pressure distribution pd, amounting to 1506 Pa and 1495 Pa at the grate front and end part.
Go to article

Bibliography

  1. Bernat, K., Kulikowska D., Wojnowska-Baryła, I. & Kamińska A. (2022). Can the biological stage of a mechanical biological treatment plant that is designed for mixed municipal solid waste be successfully utilized for effective composting of selectively collected biowaste, Waste Management, 149, pp. 291-301. DOI:10.1016/j.wasman.2022.06.025
  2. Cui, C., Zhang, X. & Cai W. (2020). An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model, Appl. Energy, 264, 11473. DOI:10.1016/j.apenergy.2020.114734
  3. Frederickson, J., Boardman, C.P., Gladding, T.L., Simpson, A.E., Howell G. & Sgouridis, F. (2013). Biofilter performance and operation as related to commercial composting. US Environment Agency 2013.
  4. Gałwa-Widera, M. & Kwarciak-Kozłowska, A. (2016). Methods for elimination of odor in the composting process, Rocznik Ochrona Środowiska, 18, pp. 850-860.
  5. Guohui, G. (2017). Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings, Renewable Energy, 103, pp. 361-371. DOI:10.1016/j.renene.2016.11.052
  6. https://www.horstmann.pl
  7. https://www.aknova.pl
  8. https://www.sutco.pl
  9. Jędrczak, A. & Den Boer, E. (2015). Final report of the 3rd stage of an expert opinion aimed at conducting waste tests in 20 installations for mechanical-biological waste treatment. https://sdr.gdos.gov.pl/Documents/GO/Ekspertyzy.
  10. Kisielewska, M., Dębowski, M. & Zieliński, M. (2020). Comparison of biogas production from anaerobic digestion of microalgae species belonged to various taxonomic groups. Archives of Environmental Protection, vol. 46, pp. 33-40. DOI:10.24425/aep.2020.132523
  11. Klimek, A., Rolbiecki, S. & Rolbiecki R. (2018). Effects of mulching with forest litter and compost made of sewage sludge on the presence of oribatida as bioindicators of soil revitalization in larch and pine in-ground forest nurseries, Rocznik Ochrona Środowiska, 20, pp. 681-696.
  12. Lanzerstorfer, Ch., Neder, F. & Schmied, R. (2016). Constant design air flow industrial ventilation systems with regenerative dust filters: Economic comparison of fan speed-controlled air damper controlled and uncontrolled operation, Energy and Buildings, 128, pp. 503–510. DOI:10.1016/j.enbuild.2016.07.032
  13. Lubczyńska, U. (2017). Applied hydraulic in environmental engineering. Publishing House, Kielce University of Technology, 2017.
  14. Nguyen, T.P., Koyama, M. & Nakasaki, K. (2022). Effects of oxygen supply rate on organic matter decomposition and microbial communities during composting in a controlled lab-scale composting system, Waste Management, Vol. 153, pp. 275-282. DOI:10.1016/j.wasman.2022.09.004
  15. Nogueira Da Silva Vilela, R., Amorim Orrico, C.A., Previdelli Orrico Junior, M.A., Aspilcueta Borquis, R.R., Dias de Oliveira, M.T.J., De Avila M. R., Torres dos Santos, F. & Viana Leite, B.K. (2022). Effects of aeration and season on the composting of slaughter house waste, Environmental Technol. & Innov, 27, 102505. DOI:10.1016/j.eti.2022.102505
  16. Pączka, G., Garczyńska, M., Mazur-Pączka, A., Podolak, A., Szura, R., Skoczko, I. & Kostecka, J. (2018). Vermicomposting of sugar beet pulps using Eisenia Fetida (sav.) earthworms, Rocznik Ochrona Środowiska, 20, pp. 588-601.
  17. Ross, H. (1995). Hydraulik der wasserheizung Oldenbourg, Verlag GmbH, Monachium 1995. Rudnik E. (2019). Chapter 5 - Composting methods and legislation, Compostable Polymer Materials 2.nd Edition, pp. 127-161. DOI:10.1016/b978-0-08-099438-3.00005-7
  18. Sadeghi, S., Nikaeen, M., Mohammadi, F., Nafez, A.H., Gholipour, S., Shamsizadeh, Z. & Hadi, M. (2022). Microbial characteristics of municipal solid waste compost: Occupational and public health risks from surface applied compost, Waste Management, 144, pp.98-105. DOI:10.1016/j.wasman.2022.03.012
  19. Sidełko, R., Janowska, B., Szymański, K., Mostowik, N. & Głowacka, A. (2019). Advanced methods to calculation of pressure drop during aeration in composting process, Science of the Total Environment, 674, pp. 19-25. DOI:10.1016/j.scitotenv.2019.04.155
  20. Sidełko, R., Seweryn, K. & Walendzik, B. (2011). Optimization of Composting Process in Real Conditions, Rocznik Ochrona Środowiska, 13, pp. 681-691.
  21. Sidełko, R. & Chmielinska-Bernacka, A. (2013). Application of Compact Reactor for Methane Fermentation of Municipal Waste, Rocznik Ochrona Środowiska, 15, pp. 683-693.
  22. Singley, M.E., Higgins, A.J. & Frumkin-Rosengaus, M. (1982). Sludge composting and utilization- A design and operating manual, New Jersy Arg. Expt. Sta., Rutgers Utility, 1982.
  23. Sundberg, C. & Jönsson, H. (2008). Higher pH and faster decomposition in biowaste composting by increased aeration, Waste Management, Vol. 28, pp. 518-526. DOI:10.1016/j.wasman.2007.01.011
  24. Szymański, K., Janowska, B., Sidełko, R. & Siebielska, I. (2007). Monitoring of waste landfills, VIII National Polish Scientific Conference on Complex and Detailed Problems of Environmental Engineering, Issue 23, pp. 75-133.
  25. Vaverkova, M.D., Elbl, J., Voberkova, S., Koda, E., Adamcova, D., Gusiatin, Z.M., Abd, Al Rahman, Radziemska, M. & Mazur, Z. (2020). Composting versus mechanical–biological treatment: Does it really make a difference in the final product parameters and maturity, Waste Management, 106, pp. 173-183. DOI:10.1016/j.wasman.2020.03.030
  26. Yi, W., Ran, G. Li, A., Zhiguo, G., Ni, Q., Yang, Y., Liu, B. & Du, Y. (2022). Air balancing method of multibranch ventilation systems under the condition of nonfully developed Flow, Boulding and Environment, 223. DOI:10.1016/j.buildenv.2022.109468
  27. Wang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q., Hu, Ch. & Ma, L. (2018). Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential, J. of Cleaner Production, 195 (10), pp. 448-557. DOI:10.1016/j.jclepro.2018.05.146
  28. Zhou, Y., Xiao, R., Klammsteiner, T., Kong, X., Yan, B., Mihai, F.C., Liu, T., Zhang, Z. & Awasthi, K.M. (2022). Recent trends and advances in composting and vermicomposting technologies: A review, Bioresources Technology, 360, 127591. DOI:10.1016/j.biortech.2022.127591
Go to article

Authors and Affiliations

Robert Sidełko
1
Dariusz Boruszko
2
ORCID: ORCID

  1. Koszalin University of Technology, Poland
  2. Bialystok University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the main results of research on plaster samples with different physical parameters of their structure. The basic physical parameter taken into account in the research is plaster aeration. Other physical parameters were also considered, but they play a minor part. The acoustic properties of the modified plaster were measured by the sound absorption coefficient; the results were compared with the absorption coefficient of standard plaster. The influence of other physical, mechanical and thermal properties of plaster was not analyzed. The effect of modified plasters on indoor acoustics was also determined. To this end, an acoustic problem with impedance boundary conditions was solved. The results were achieved by the Meshless Method (MLM) and compared with exact results. It was shown that the increase in plaster aeration translated into an increase in the sound absorption coefficient, followed by a slight decrease in the noise level in the room. Numerical calculations confirmed this conclusion.
Go to article

Bibliography

1. Bonfiglio P., Pompoli F. (2007), Acoustical and physical characterization of a new porous absorbing plaster, ICA, 19-th International Congress on Acoustics, Madrid, 2–7 September 2007.
2. Branski A. (2013), Numerical methods to the solution of boundary problems, classification and survey [in Polish], Rzeszow University of Technology Press, Rzeszow.
3. Branski A., Kocan-Krawczyk A., Predka E. (2017), An influence of the wall acoustic impedance on the room acoustics. The exact solution, Archives of Acoustics, 42(4): 677–687, doi: 10.1515/aoa-2017-0070.
4. Branski A., Predka E. (2018), Nonsingular meshless method in an acoustic indoor problem, Archives of Acoustics, 43(1): 75–82, doi: 10.24425/118082.
5. Branski A., Predka E., Wierzbinska M., Hordij P. (2013), Influence of the plaster physical structure on its acoustic properties, 60th Open Seminar on Acoustics, Rzeszów–Polanczyk (abstract: Archives of Acoustics, 38(3): 437–437).
6. Chen L., Zhao W., Liu C., Chen H., Marburg S. (2019), Isogeometric fast multipole boundary element method based on Burton-Miller formulation for 3D acoustic problems, Archives of Acoustics, 44(3): 475– 492, doi: 10.24425/aoa.2019.129263.
7. Chen L., Li X. (2020), An efficient meshless boundary point interpolation method for acoustic radiation and scattering, Computers & Structures, 229: 106182, doi: 10.1016/j.compstruc.2019.106182.
8. Cucharero J., Hänninen T., Lokki T. (2019), Influence of sound-absorbing material placement on room acoustical parameters, Acoustics, 1(3): 644–660; doi: 10.3390/acoustics1030038.
9. ISO 10354-2:1998 (1998), Acoustics – determination of sound absorption coefficient in impedance tube. Part 2: Transfer-function method.
10. Kulhav P., Samkov A., Petru M., Pechociakova M. (2018), Improvement of the acoustic attenuation of plaster composites by the addition of shortfibre reinforcement, Advances in Materials Science and Engineering, 2018: Article ID 7356721, 15 pages, doi: 10.1155/2018/7356721.
11. Li W., Zhang Q., Gui Q., Chai Y. (2020), A coupled FE-Meshfree triangular element for acoustic radiation problems, International Journal of Computational Methods, 18(3): 2041002, doi: 10.1142/S0219876220410029.
12. McLachlan N.W. (1955), Bessel Functions for Engineers, Clarendon Press, Oxford.
13. Meissner M. (2012), Acoustic energy density distribution and sound intensity vector field inside coupled spaces, The Journal of the Acoustical Society of America, 132(1): 228−238, doi: 10.1121/1.4726030.
14. Meissner M. (2013), Analytical and numerical study of acoustic intensity field in irregularly shaped room, Applied Acoustics, 74(5): 661–668, doi: 10.1016/j.apacoust.2012.11.009.
15. Meissner M. (2016), Improving acoustics of hardwalled rectangular room by ceiling treatment with absorbing material, Progress of Acoustics, Polish Acoustical Society, Warsaw Division, Warszawa, pp. 413–423.
16. Mondet B., Brunskog J., Jeong C.-H., Rindel J.H. (2020), From absorption to impedance: Enhancing boundary conditions in room acoustic simulations, Applied Acoustics, 157: 106884, doi: 10.1016/j.apacoust.2019.04.034.
17. Piechowicz J., Czajka I. (2012), Estimation of acoustic impedance for surfaces delimiting the volume of an enclosed space, Archives of Acoustics, 37(1): 97– 102, doi: 10.2478/v10168-012-0013-8.
18. Piechowicz J., Czajka I. (2013), Determination of acoustic impedance of walls based on acoustic field parameter values measured in the room, Acta Physica Polonica, 123(6): 1068–1071, doi: 10.12693/Aphyspola.123.1068.
19. Predka E., Branski A. (2020), Analysis of the room acoustics with impedance boundary conditions in the full range of acoustic frequencies, Archives of Acoustics, 45(1): 85–92, doi: 10.24425/aoa.2020.132484.
20. Predka E., Kocan-Krawczyk A., Branski A. (2020), Selected aspects of meshless method optimization in the room acoustics with impedance boundary conditions, Archives of Acoustics, 45(4): 647–654, doi: 10.24425/aoa.2020.135252
21. Qu W. (2019), A high accuracy method for longtime evolution of acoustic wave equation, Applied Mathematics Letters, 98: 135–141, doi: 10.1016/j.aml.2019.06.010.
22. Qu W., Fan C.-M., Gu Y., Wang F. (2019), Analysis of three-dimensional interior acoustic field by using the localized method of fundamental solutions, Applied Mathematical Modelling, 76: 122–132, doi: 10.1016/j.apm.2019.06.014.
23. Qu W., He H. (2020), A spatial–temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Applied Mathematics Letters, 110: 106579, doi: 10.1016/j.aml.2020.106579.
24. Shebl S.S., Seddeq H.S., Aglan H.A. (2011), Effect of micro-silica loading on the mechanical and acoustic properties of cement pastes, Construction and Building Materials, 25(10): 3903–3908, doi: 10.1016/j.conbuildmat.2011.04.021.
25. Stankevicius V., Skripki¯unas G., Grinys A., Miškinis K. (2007), Acoustical characteristics and physical-mechanical properties of plaster with rubber waste additives, Materials Science (Medžiagotyra), 13(4): 304–309.
26. You X., Li W., Chai Y. (2020), A truly meshfree method for solving acoustic problems using local weak form and radial basis functions, Applied Mathematics and Computation, 365: 124694, doi: 10.1016/j.amc.2019.124694.
Go to article

Authors and Affiliations

Edyta Prędka
1
Adam Brański
1
ORCID: ORCID
Małgorzata Wierzbińska
2

  1. Department of Electrical and Computer Engineering Fundamentals, Technical University of Rzeszow, Rzeszów, Poland
  2. Department of Materials Science, Technical University of Rzeszow, Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper provides an overview of selected scientific articles presenting research carried out in recent years on methods for producing autoclaved aerated concrete. Traditional technologies are briefly presented, together with innovative solutions for the production of low-density and ultra-lowdensity materials. In addition to the presentation of the manufacturing methods themselves, the results of research into the properties of the autoclaved aerated concrete obtained and their dependence on the technology used are also presented. A subjective selection and review of articles covering research into the thermal conductivity of concrete, the technological factors influencing them and the ways in which they can be shaped was also carried out. A significant number of the cited articles do not function in the world scientific circulation due to the language barrier (they are mainly in Ukrainian). In the meantime, they contain interesting research results which can inspire further research into the issues discussed concerning the production technology and the thermal and strength properties of autoclaved aerated concrete, with particular emphasis on lightweight and ultra-lightweight concrete.
Go to article

Authors and Affiliations

Yaroslav Yakymechko
1
ORCID: ORCID
Roman Jaskulski
2
ORCID: ORCID
Maciej Banach
2
ORCID: ORCID
Piotr Perłowski
2
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Chemistry and Chemical Technologies, Bandera str. 13, Lviv, Ukraine
  2. Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies on local resistance coefficients (ζ). The study used pipe aerators with filling made according to the Polish patent PL235924. The hydraulic investigations were performed in real working conditions of a water treatment plant in a testing rig built in the Scientific and Research Water Station of the Warsaw University of Life Sciences (SGGW). The investigation encompassed two plastic pipe aerators of an internal diameter 101.6 and 147.6 mm with steel Białecki rings of 12 and 25 mm in diameter. Measurements of pressure difference (Δp) in the investigated aerators were performed at volumetric water flows ( Q) selected from the range 2–20 m 3∙h –1 with the interval 2 m 3∙s –1. The values of ζ were determined according to the PN-EN 1267:2012 standard. The investigation showed that the ζ depends both on an internal diameter of the plastic pipe aerator and the diameter of Białecki steel rings. The values of ζ increase with a decrease of the internal diameter of the pipe aerator and a decrease of the ring diameter.
Go to article

Authors and Affiliations

Marek Kalenik
1
ORCID: ORCID
Marek Chalecki
2
ORCID: ORCID
Piotr Wichowski
1
ORCID: ORCID
Adam Kiczko
1
ORCID: ORCID
Krzysztof Chmielowski
3
ORCID: ORCID
Martyna Świętochowska
4
ORCID: ORCID
Joanna Gwoździej-Mazur
4
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  2. Warsaw University of Life Science – SGGW, Institute of Civil Engineering, Department of Mechanics and Building Structures, Warsaw, Poland
  3. University of Science and Technology in Krakow – AGH, Faculty of Drilling, Oil and Gas, Department of Gas Engineering, Krakow, Poland
  4. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Water Supply and Sewage Systems, Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

Batch dark fermentation of wheat straw and boiled potato wastes at volatile suspended solids (VSS) 5 g VSS/L are examined and compared. Investigations on dark fermentation of potatowastes and wheat straw were carried out at different pH and OFR (oxygen flow rate) values and inoculum pretreatment. The obtained hydrogen yield from waste potato was 70 mL/g VSS, while for hydrolysed wheat straw it amounted to 80 mL/g VSS. The optimum conditions for potato dark fermentation are acidic pH 6.0 and OFR 1.0 mL/h, while for the wheat straw, optimal conditions are pH 6.4 and OFR 4.6 mL/h. The comparison revealed a significant difference in hydrogen production due to the type of substrate, inoculum stressing and DF conditions applied.
Go to article

Bibliography

Achinas S., Li Y., Achinas V., Euverink G.J.W., 2019. Biogas potential from the anaerobic digestion of potato peels: Process performance and kinetics evaluation. Energies, 12, 2311. DOI: 10.3390/en12122311.
Aly S.S., Imai T., Hassouna M.S., Kim Nguyen D.M., Higuchi T., Kanno A., Yamamoto K., Akada R., Sekine M., 2018. Identification of factors that accelerate hydrogen production by Clostridium butyricum RAK25832 using casamino acids as a nitrogen source. Int. J. Hydrogen Energy, 43, 5300–5313. DOI: 10.1016/j.ijhydene.2017.08.171.
Bartacek J., Zabranska J., Lens P.N.L., 2007. Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod. Biorefin., 1, 201–214. DOI: 10.1002/bbb.17.
Bundhoo Z.M.A., 2019. Potential of bio-hydrogen production from dark fermentation of crop residues: A review. Int. J. Hydrogen Energy, 44, 17346–17362. DOI: 10.1016/j.ijhydene.2018.11.098.
Chaganti S.R., Kim D.H., Lalman J.A., 2012. Dark fermentative hydrogen production by mixed anaerobic cultures: Effect of inoculum treatment methods on hydrogen yield. Renewable Energy, 48, 117–121. DOI: 10.1016/j.renene.2012.04.015.
Chi C.H., Chen K.W., Huang J.J., Chuang Y.C., Wu M.H., 1995. Gas composition in Clostridium septicum gas gangrene. J. Formos. Med. Assoc., 94, 757–759.
De Cicco A., Jeanty J.-C., 2017. The EU potato sector – statistics on production, prices and trade – Statistics Explained. Statistic Explained. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title= The_EU_potato_sector_-_statistics_on_production,_prices_and_trade.
Dessě P., Lakaniemi A.M., Lens P.N.L., 2017. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Water Res., 115, 120–129. DOI: 10.1016/j.watres.2017.02.063.
Gallipoli A., Braguglia C.M., Gianico A., Montecchio D., Pagliaccia P., 2020. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. J. Environ. Sci., 89, 167–179. DOI: 10.1016/j.jes.2019.10.016.
Garcia-Bernet D., Steyer J.-P., Bernet N., 2017. Traitement anaérobie des effluents industriels liquides Traitement anaérobie des effluents industriels liquides. Techniques de l’Ingénieur, Réf : J3943 v2.
García Depraect O., Muńoz R., van Lier J.B., Rene E.R., Diaz-Cruces V.F., León Becerril E., 2020. Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. Bioresour. Technol., 307, 123160. DOI: 10.1016/j.biortech.2020.123160.
Han W., Ye M., Zhu A.J., Zhao H.T., Li Y.F., 2015. Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol., 191, 24–29. DOI: 10.1016/j.biortech.2015.04.120.
Hawkes F.R., Hussy I., Kyazze G., Dinsdale R., Hawkes D.L., 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy, 32, 172–184. DOI: 10.1016/j.ijhydene.2006.08.014.
Hernández C., Alamilla-Ortiz Z.L., Escalante A.E., Navarro-Díaz M., Carrillo-Reyes J., Moreno-Andrade I., Valdez- Vazquez I., 2019. Heat-shock treatment applied to inocula for H2 production decreases microbial diversities, interspecific interactions and performance using cellulose as substrate. Int. J. Hydrogen Energy, 44, 13126– 13134. DOI: 10.1016/j.ijhydene.2019.03.124.
Kumar G., Bakonyi P., Periyasamy S., Kim S.H., Nemestóthy N., Bélafi-Bakó K., 2015. Lignocellulose biohydrogen: Practical challenges and recent progress. Renewable Sustainable Energy Rev., 44, 728–737. DOI: 10.1016/j.rser. 2015.01.042.
Laurinavichene T.V., Belokopytov B.F., Laurinavichius K.S., Tekucheva D.N., Seibert M., Tsygankov A.A., 2010. Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. Int. J. Hydrogen Energy, 35, 8536–8543. DOI: 10.1016/j.ijhydene.2010.02.063.
Leszczyński, W., 2000. Jakość ziemniaka konsumpcyjnego. Żywność, Nauka, Technologia, Jakość, Supl., 4(25), 5–27.
Li Y., Zhang Q., Deng L., Liu Z., Jiang H., Wang F., 2018. Biohydrogen production from fermentation of cotton stalk hydrolysate by Klebsiella sp. WL1316 newly isolated from wild carp (Cyprinus carpio L.) of the Tarim River basin. Appl. Microbiol. Biotechnol., 102, 4231–4242. DOI: 10.1007/s00253-018-8882-z.
Moriarty K., 2013. Feasibility study of anaerobic digestion of food waste in St. Bernard, Louisiana. A study prepared in partnership with the Environmental Protection Agency for the RE-Powering America’s Land Initiative: Siting renewable energy on potentially contaminated land and mine sites. National Renewable Energy Laboratory (NREL), Technical Report, NREL/TP-7A30-57082. DOI: 10.2172/1067946.
Nasirian N., Almassi M., Minaei S., Widmann R., 2011. Development of a method for biohydrogen production from wheat straw by dark fermentation. Int. J. Hydrogen Energy, 36, 411–420. DOI: 10.1016/j.ijhydene.2010.09.073.
Paillet F., Maron, A., Moscovi, R., Steyer J.P., Tapia-Venegas E., Bernet N., Trably E., 2019. Improvement of biohydrogen production from glycerol in micro-oxidative environment. Int. J. Hydrogen Energy, 44, 17802– 17812. DOI: 10.1016/j.ijhydene.2019.05.082.
Patel A.K., Debroy A., Sharma S., Saini R., Mathur A., Gupta R., Tuli D.K., 2015. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. Bioresour. Technol., 175, 291–297. DOI: 10.1016/j.biortech.2014.10.110.
Sekoai P.T., Ayeni A.O., Daramola M.O., 2019. Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass Valorization, 10, 1177–1189. DOI: 10.1007/s12649-017-0136-2.
Si B.C., Li J.M., Zhu Z.B., Zhang Y.H., Lu J.W., Shen R.X., Zhang C., 2016. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via twostage highrate anaerobic reactors. Biotechnol. Biofuels, 9, 254. DOI: 10.1186/s13068-016-0666-z.
Słupek E., Kucharska K., Ge˛bicki J., 2019. Alternative methods for dark fermentation course analysis. SN Appl. Sci., 1, 469. DOI: 10.1007/s42452-019-0488-2.
Sołowski G., Konkol I., Cenian A., 2019a. Perspectives of hydrogen production from corn wastes in Poland by means of dark fermentation. Ecol. Chem. Eng. S, 26, 255–263. DOI: 10.1515/eces-2019-0031.
Sołowski G., Konkol, I., Hrycak B., Czylkowski D., 2019b. Hydrogen and methane production under conditions of anaerobic digestion of key-lime and cabbage wastes. Agritech, 39(3), 243–250. DOI: 10.22146/agritech.35848.
Sołowski G., Konkol I., Cenian A., 2020a. Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. J. Cleaner Prod., 267, 121721. DOI: 10.1016/j.jclepro.2020.121721.
Sołowski G., Konkol I., Cenian A., 2020b. Methane and hydrogen production from cotton waste by dark fermentation under anaerobic and micro-aerobic conditions. Biomass Bioenergy, 138, 105576. DOI: 10.1016/j.biombioe.2020.105576.
Woodward J., Orr M., Cordray K., Greenbaum E., 2000. Enzymatic production of biohydrogen. Nature, 405, 1014–1015. DOI: 10.1038/35016633.
Go to article

Authors and Affiliations

Gaweł Sołowski
1
Izabela Konkol
1
Marwa Shalaby
2
Adam Cenian
1

  1. Institute of Fluid-Flow Machinery Polish Academy of Sciences, Physical Aspects of Ecoenergy Department, 14 Fiszera St., 80-231 Gdańsk, Poland
  2. National Research Center in Cairo, Department of Chemical Engineering and Pilot Plant, El Bijouth St., Dokki, Cairo, Egypt 12622
Download PDF Download RIS Download Bibtex

Abstract

Aquaculture plays a great role in producing foodstuffs, sustaining inland capture fisheries and providing employment. The key to future development in pond aquaculture is diversification of production technology, intensity, and function connected to increasing the environmental value of pond areas. New production systems involve a combination of intensive and extensive pond culture, increasing productivity and improving nutrient utilisation and fish species diversification. The most important principle of these systems is the possibility to use the wastes from intensive aquaculture as the input for extensive, environment-friendly fish production. These systems were proven to be profitable and sustainable in tropical and subtropical areas. However, for temperate climatic conditions, such data are scarce. For this reason, we decided to discuss modifications that, in our opinion, can be applied in an extensive part of the integrated intensive-extensive system in temperate climatic conditions in order to increase the overall productivity of the pond aquaculture.
Go to article

Authors and Affiliations

Ludmiła Kolek
1
ORCID: ORCID
Ilgiz Irnazarow
1
ORCID: ORCID

  1. Polish Academy of Science, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, Kalinowa St 2, 43-520 Chybie, Poland

This page uses 'cookies'. Learn more