Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Platelet aggregation contributes to the pathogenesis of cardiovascular diseases. After activation it leads to dense granule secretion and 5-HT release. The question arises; how platelet aggregation is endogenously controlled during blood circulation. In preliminary studies, we observed that human plate-lets aggregate more rapidly when suspended in buffer as compared to those suspended in plasma (PRP). These observations point to the presence of an endogenous substance that may inhibit arachidonic acid– induced platelet aggregation. An analysis of plasma Cohn fractions demonstrated that most of the plasma inhibitory activity was associated with albumin–rich and α-globulin rich protein fractions. The identity of plasma endogenous inhibitors of platelet aggregation (EIPA) was established by affinity chromatography on Cibacron Blue F3G-A for specific removal of albumin. The association of α-globulins to EIPA activity was recognized as due to haptoglobin by affinity chromatography on a column of hemoglobin-sepharose. In addition, we also found that the distribution of EIPA activity varies according to sex and physiological state. These findings reveal that EIPA may act by modulation of arachidonic acid metabolism or seques-tering the fatty acid substrate.
Go to article

Authors and Affiliations

Nadia Khan
1 2 3
Magdalena Kurnik-Łucka
2
Gniewomir Latacz
3
Krzysztof Gil
2
Sheikh Arshad Saeed
1

  1. Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), University of Karachi, Karachi, Pakistan
  2. Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
  3. Department of Technology & Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Immunoaffinity chromatography (IAC) is a fundamental isolation and purification tool which is incorporated in a substantial range of therapeutic and diagnostic applications. This study has reappraised the usefulness of immunoaffinity chromatography for the purification of polyclonal antibodies. Protein A based IAC is a convenient and reliable method for purification of IgG, from hyperimmunesera (HIS) raised in experimental animals such as rabbits, guinea pigs and mice to be utilized in pharmaceutics and diagnostics. The 146S fraction of Foot and Mouth Disease virus (FMDV) TCID50=10 5.6 was cultured on a baby hamster kidney cell line 21 (BHK-21), concentrated using salt precipitation method using PEG 6000, purified by size exclusion chromatography (SEC) using Sepharose-30 at 254nm absorbance. Purification of 146S FMDV was analyzed using 12% SDS-PAGE which provided two bands of light and heavy chains. The alum-based vaccine, consisting of ≥10μg of 146S FMDV, was applied in 10 male rabbits and 10 male guinea pigs and two animals of each group were taken as a negative control. The titer of serum was calculated using virus neutralization test. A Protein-A kit (Thermo scientific- 44667, 0528.2) was used to purify HIS raised against 146S FMDV and validated using 12% SDS PAGE in reducing condition. The data demonstrate that protein-A affinity chromatography is an efficient tool for the purification of antibodies from hyper-immune sera raised against 146S FMDV and can be used for the production of diagnostic kits e.g. Enzyme linked immuno-sorbent assay (ELISA) and radioimmunoassay.
Go to article

Bibliography


  1. Abi-Ghanem DA, Berghman LR (2015) Immunoaffinity chromatography: a review. Aff Chromatograph 95-103.
  2. Arora S, Saxena V, Ayyar BV (2017) Affinity chromatography: A versatile technique for antibody purification. Methods 116: 84-94.
  3. Ayyar BV, Arora S, Murphy C, O’Kennedy R (2012) Affinity chromatography as a tool for antibody purification. Methods 56: 116-129.
  4. Bergmann-Leitner ES, Mease RM, Duncan EH, Khan F, Waitumbi J, Angov E (2008) Evaluation of immunoglobulin purification methods and their impact on quality and yield of antigen-specific antibodies. Mala J 7: 1-10.
  5. Basagoudanavar SH, Hosamani M, Muthuchelvan D, Singh R, Santhamani R, Sreenivasa B, Saravanan P, Pandey A, Singh R, Venkataramanan R (2018) Baculovirus expression and purification of peste-des-petits-ruminants virus nucleocapsid protein and its application in diagnostic assay. Biologicals 55: 38-42.
  6. Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157: 220-233.
  7. Coelho LC, Santos AF, Napoleão TH, Correia MT, Paiva PM (2012) Protein purification by affinity chromatography. Intech.
  8. de Sousa P, Tavares P, Teixeira E, Dias N, Lima MdA, Luna F, Gondim D, de Azevedo D, Junior IS (2019) Experimental designs for optimizing the purification of immunoglobulin G by mixed-mode chromatography. J Chromatogr B. 1125, 121719.
  9. Eivazi S, Majidi J, Abdolalizadeh J, Yousefi M, Ahmadi M, Dadashi S, Moradi Z, Zolali E (2015) Production and purification of a polyclonal antibody against purified mouse IgG2b in rabbits towards designing mouse monoclonal isotyping kits. Adv Pharm Bull 5: 109.
  10. Hilbrig F, Freitag R (2003) Protein purification by affinity precipitation. J Chromatogr B 790: 79-90.
  11. Hosamani M, Gopinath S, Sreenivasa B, Behera S, Basagoudanavar SH, Boora A, Bora DP, Deka P, Bhanuprakash V, Singh RK (2022) A new blocking ELISA for detection of foot-and-mouth disease non-structural protein (NSP) antibodies in a broad host range. Appl Microbiol and Biotechnol 106: 6745-6757.
  12. Hossienizadeh SMJ, Bagheri M, Alizadeh M, Rahimi M, Azimi SM, Kamalzade M, Es-Haghi A, Ghassempour A (2021) Two Dimensional Anion Exchange-Size Exclusion Chromatography Combined with Mathematical Modeling for Downstream Processing of Foot and Mouth Disease Vaccine. J Chromatogr A 1643: 462070.
  13. Huang S, Cheng SY, Zhang SY, Yan YL, Cai SL, Li XL, Zheng SR, Fan J, Zhang WG. (2020) Protein A-mesoporous silica composites for chromatographic purification of immunoglobulin G. New J Chem 44: 7884-7890.
  14. Huse K, Böhme HJ, Scholz GH (2002) Purification of antibodies by affinity chromatography. J Bioch Bioph Meth 51: 217-231.
  15. Ma Z, Ramakrishna S. (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Memb Sci 319: 23-28.
  16. Rathore AS, Narnaware S (2022) Purification of therapeutic antibodies by protein a affinity chromatography. Methods Mol Biol 2313, pp 169-177.
  17. Rižner TL (2014) Teaching the structure of immunoglobulins by molecular visualization and SDS‐PAGE analysis. Biochem Mol Biol Educ 42: 152-159.
  18. Roque AC, Silva CS, Taipa MÂ (2007) Affinity-based methodologies and ligands for antibody purification: advances and perspectives. J Chromatogr A 1160: 44-55.
  19. Sadeghi S, Aghebati Maleki L, Nozari S, Majidi J (2018) A methodological approach for production and purification of polyclonal antibody against dog IgG. Vet Res Forum.
  20. Subramanian A (2002) Immunoaffinity chromatography. Mol Biotechnol 20: 41-47.
  21. Verdoliva A, Pannone F, Rossi M, Catello S, Manfredi V (2002) Affinity purification of polyclonal antibodies using a new all-D synthetic peptide ligand: comparison with protein A and protein G. J Immunol Meth 271:77-88.
  22. Wang Y, Zhang P, Liu S, Zhang Y, Zhao T, Huang W, He C, Yu Y, Wang L, Wan M (2011) Purification of IgG from sera of rabbit and guinea pig by flow-through mode ion-exchange chromatography using DEAE sepharose fast flow column. Chromatographia 74: 209-214.
  23. Wu M, Wang X, Zhang Z, Wang R (2011) Isolation and purification of bioactive proteins from bovine colostrum; Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications; IntechOpen; 347-366.
  24. Yang L, Harding JD, Ivanov AV, Ramasubramanyan N, Dong DD (2015) Effect of cleaning agents and additives on Protein A ligand degradation and chromatography performance. J Chromatogr A 1385: 63-68.
Go to article

Authors and Affiliations

A. Munir
1
A.A. Anjum
1
I. Altaf
2
A.R. Awan
3

  1. Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Outfall road, Lahore, Pakistan
  2. Quality Operations Laboratory, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Outfall road, Lahore, Pakistan
  3. Department of Biochemistry and Biotechnology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Outfall road, Lahore, Pakistan

This page uses 'cookies'. Learn more