Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of the analysis of straw obtained from ripening wheat, which was subjected to four water soaking cycles in demineralized water. The soaking was carried out under laboratory conditions at 20°C. As a result, part of mineral matter, including a significant amount of alkaline sodium and potassium salts and substances containing sulfur and phosphorus, was washed out. The process of soaking has a great impact on the chemical composition of ash obtained from water-treated straw, which increased its acidity. The Na2O content in the analyzed ash has decreased by 78%, while the K2O content has decreased by 60%. In turn, the content of water-insoluble, acid-forming SiO2 has increased by 80%. As a consequence, a positive change in the values of indices, on the basis of which the tendency of straw to slagging and deposit formation during the combustion and gasification processes is assessed, has been observed. Already after the second water soaking cycle it became apparent, based on the AI alkali index, that the examined fuel should not cause difficulties resulting from the increased intensity of use of the boiler during the combustion process. Meanwhile, the value of the BAI bed agglomeration index was considered to be safe, indicating a low possibility of bed agglomeration during the combustion or fluidized bed gasification, after the third water soaking cycle. The third of the analyzed indices, the Fu fouling index, did not indicate any tendency to deposit formation during the combustion; however, four water soaking cycles reduced its initial value by 80%. The last of the analyzed indexes, the SR, slag viscosity index did not change its value during the experiment, which, both for the raw straw and after subsequent soaking cycles, indicated that the fuel should have a low tendency to accumulate slag during the combustion process.
Go to article

Authors and Affiliations

Andrzej Rozwadowski
Tadeusz Dziok
Download PDF Download RIS Download Bibtex

Abstract

Alkali-aggregate reactivity (AAR) is one of the major causes of damage in concrete. Potential susceptibility of aggregates to this reaction can be determined using several methods. This study compares gravel alkali reactivity results obtained from different tests conducted on coarse aggregates with complex petrography. The potential for the reactivity in the aggregates was revealed in the chemical test using treatment with sodium hydroxide. Optical microscopy, scanning electron microscopy and X-ray diffraction were used to identify the reactive constituents. The expansion measured in the mortar bars test confirmed that the aggregate was potentially capable of alkali silica reactivity with consequent deleterious effect on concrete.

Go to article

Authors and Affiliations

Z. Owsiak
P. Czapik
J. Zapała-Sławeta
Download PDF Download RIS Download Bibtex

Abstract

Recently, the use of inorganic binders cured by heat as a progressive technology for large scale production of cores is widely discussed topic in aluminium foundries. As practical experiences show, knock-out properties of inorganic binders were significantly increased, although they cannot overcome organic based binder systems. This paper contains information about hot curing processes based on alkali silicate and geopolymer binder systems for core making. Main differences between hot cured geopolymers and hot cured alkali silicate based inorganic binders are discussed. Theory of geopolymer binder states, that binder bridge destruction is mainly of adhesive character. The main aim of this research paper was to examine binder bridge destruction of alkali silicate and geopolymer binder systems. In order to fulfil this objective, sample parts were submitted to defined thermal load, broken and by using SEM analysis, binder bridge destruction mechanism was observed. Results showed that geopolymer binder system examined within this investigation does not have mainly adhesive destruction of binder bridges, however the ratio of adhesive-cohesive to cohesive destruction is higher than by use of alkali silicate based binder systems, therefore better knock-out properties can be expected.

Go to article

Authors and Affiliations

I. Vaskova
M. Conev
Download PDF Download RIS Download Bibtex

Abstract

The study presented research on the possibility of using acoustic emission to detect and analyze the development of the alkali-silica reaction (ASR) in cement mortars. The experiment was conducted under laboratory conditions using mortars with reactive opal aggregate, accelerating the reaction by ensuring high humidity and temperature, in accordance with ASTM C227. The progress of corrosion processes was monitored continuously for 14 days. The tests were complemented with measurements of the expansion of the mortars and observations of microstructures under a scanning electron microscope. The high sensitivity of the acoustic emission method applied to material fracture caused by ASR enabled the detection of corrosion processes already on the first day of the test, much sooner than the first recorded changes in linear elongation of the specimens. Characteristic signal descriptors were analyzed to determine the progress of corrosion processes and indicate the source of the cracks. Analysis of recorded 13 AE parameters (counts total, counts to peak, duration, rise time, energy, signal strength, amplitude, RMS, ASL, relative energy, average frequency, initial frequency and reverberation frequency) indicates that the number of counts, signal strength and average frequency provide most information about the deleterious processes that occur in the reactive aggregate mortars. The values of RA (rise time/amplitude) and AF (average frequency) enabled the classification of detected signals as indicating tensile or shear cracks. The acoustic emission method was found suitable for monitoring the course of alkali-aggregate reaction effects.

Go to article

Authors and Affiliations

G. Świt
J. Zapała-Sławeta
Download PDF Download RIS Download Bibtex

Abstract

In the construction industry carbonate aggregates are commonly used in processes such as concrete production. Aggregates which contain (in their mineral composition) dolomite and an admixture of clay minerals and amorphous silica , can react with alkalis. These reactions can lead to a destructive expansion in concrete. This article explains the mechanisms and the essence of this phenomenon. What is more, some effective and fast methods of the estimation and evaluation of Polish aggregates consisting of carbonate rocks suggests effective methods to determine the usefulness of Polish carbonate aggregates in concrete production are discussed in the paper. Underneath the quality criteria to determine the reactivity of the aggregates will be given. It has been agreed that alkaline reaction and expansion are two separate phenomena related to each other genetically. The aggregates in which reactions caused by clay-siliceous admixtures occur are subjected to expansion. Mineral composition of expansive aggregates as well as their texture indicate that epigenetic dolomites with a distinctive texture are the most reactive. The phase transformations do not end with a complete disintegration of dolomite. They have a cyclical character. They consist of interchangeable reactions of dedolomitization and dolomitization of secondary calcite formed as a result of dolomite's disintegration. The secondary calcite can be effected by Mg+2 ions from pores' solutions and it can form a secondary dolomite. The Mg2+ ions originate from brucite [Mg(OH)2], created in dolomitization process. As a consequence of its reaction with silica, brucite can dissolve and enrich secondary calcite with magnesium. Therefore the reactions which take place in reactive carbonate aggregates and concrete that ismade of it are in fact ongoing processes which consist of dolomite's changes into calcite and vice versa. They are reactions between dedolomitization products (brucite, silica) and products from outside (water, alkalis). The described dedolomitization reactions are a phase of the process that enables expansion due to formation of pressure in inter-granular cracks, with pressure being a result of dry clay-minerals' expansion under the influence of water solutions. Loosening of the aggregate's structure as an effect of dedolomitization reaction makes it easier for water solutions to migrate far into the aggregate's grains followed by their contact with clay minerals.

Go to article

Authors and Affiliations

Stefan Góralczyk
Download PDF Download RIS Download Bibtex

Abstract

Currently, one of the main challenges of civil engineering and science materials engineers is to develop a sustainable substitute for Ordinary Portland Cement. While the most promising solution is provided by the geopolymerisation technology, most of the studied geopolymers are based on natural raw materials (kaolin). The metakaolin is mainly preferred because of its rapid rate of dissolution in the activator solution, easy control of the Si/Al ratio, and white color. However, its high cost prevents it from being widely used in geopolymer composites or other materials that can become an industrial alternative for Ordinary Portland Cement. Several studies have shown that geopolymers with good performance can also be obtained from secondary raw materials (industrial wastes such as coal ash or slag). This explains why countries with rapidly developing economies are so interested in this technology. These countries have significant amounts of industrial waste and lack a well-developed recycling infrastructure. Therefore, the use of these by-products for geopolymers manufacturing could solve a waste problem while simultaneously lowering virgin raw material consumption. This study evaluates the effect of replacing different amounts of coal ash with sand on the microstructure of sintered geopolymers. Accordingly, scanning electron microscopy and energy dispersive X-ray analysis were involved to highlight the morphological particularities of room-cured and sintered geopolymers.
Go to article

Authors and Affiliations

D.D. Burduhos-Nergis
1
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
D.C. Achitei
1
ORCID: ORCID
A.V. Sandu
1 3
ORCID: ORCID
D.P. Burduhos-Nergis
1
ORCID: ORCID
M.M.A.B. Abdullah
4 5
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 41, 700050 Iasi, Romania
  2. Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
  3. Romanian Inventors Forum, St. P. Movila 3, 700089 Iasi, Romania
  4. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
  5. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Arau 02600, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the possibilities of using alkali silicate based inorganic binders for automotive industry aluminium castings production. In recent years, inorganic binders are coming back to the foreground and their manufacturers are developing new processes, which are starting to progressively supersede organic binder systems. Paper describes known knowledge about classic alkali silicate binders with focus on hardening processes and on improving their technological properties. Trends from the area of development and the use new alkali silicate based inorganic binders are also shortly described. As part of the experimental work, specific methods of producing samples were developed, with the help of which properties such as disintegration were subsequently evaluated by measuring abrasion and residual strengths. Characteristics such as residual compressive strength or shear strength at different thermal loads were also evaluated. When comparing the laboratory results with the results of de-coring in real conditions, a high degree of correlation was achieved, which makes it possible to determine the optimal recipe/procedure for the production of geometrically complex cores.
Go to article

Bibliography

[1] Jelínek, P. (1996). Foundry molding mixtures Part II, Binder systems of molding mixtures. Ostrava.
[2] Lewandowski, J.L. (1997) Plastics for casting molds. Kraków: WYD AKAPIT.
[3] Bolibruchova, D., Kuris, M., Matejka, M. & Kasinska, J. (2022). Study of the influence of zirconium, titanium and strontium on the properties and microstructure of AlSi7Mg0.3Cu0.5 alloy. Materials. 15(10). 3709, 1-20. DOI: 10.3390/ma15103709.
[4] Köhler, E., Klimesch, C., Bechtle, S. & Stanchev, S. (2010). Cylinder head production with gravity die casting. MTZ Worldwide. 71, 38-41. DOI: 10.1007/BF03227043. https://doi.org/10.1007/BF03227043.
[5] Polzin, H. (2014.) Inorganic Binders for mould and core production in the foundry. (1st. ed.) Berlin: Schiele und Schön.
[6] Antoš, P., Burian, A. (2002). Water glass - production, structure, properties and uses. Silchem
[7] Izdebska-Szanda, I., Palma, A., Angrecki, M. & Żmudzińska, M. (2013). Environmentally friendly mould technology. Archives of Foundry Engineering. 13(3), 37-42. DOI: 10.2478/afe-2013-0055.
[8] Stechman, M., Różycka, D. & Baliński, A. (2003). Modification of aqueous sodium silicate solutions with morphoactive agents. Polish Journal of Chemical Technology. 5(3), 47-50. ISSN (1509-8117).
[9] Jelínek, P. & Škuta, R. (2003). Modified sodium silicates – a new alternative for inorganic foundry binders. Materials Enginering. 10(3), 283.
[10] Mashifana, T. & Sithole, T. (2020). Recovery of silicon dioxide from waste foundry sand and alkaline activation of desilicated foundry sand. Journal of Sustainable Metallurgy. 6, 700-714. DOI: 10.1007/s40831-020-00303-5.
[11] Vasková, I. & Bobok, L. (2002). Some knowledge of the water glass modification by the phosphate compounds. Acta Metallurgica Slovaca. 8(2), 161-167.
[12] Major-Gabryś, K., Dobosz, St.M., Jelínek, P., Jakubski, J. & Beňo, J. (2014). The measurement of high-temperature expansion as the standard of estimation the knock-out properties of moulding sands with hydrated sodium silicate. Archives of Metallurgy and Materials. 59(2), 739-742. DOI: 10.2478/amm-2014-0123.
[13] Obzina, T., Merta, V., Folta, M., Bradáč, J., Beňo, J. Novohradská, N., et al. (2021). Technological and quality aspects of the use of innovative inorganic binders in the production of castings. Metals. 11(11), 1779, 1-13. DOI: 10.3390/met11111779.
[14] Izdebska-Szanda, I., Baliński, A., Angrecki, M. & Palma, A. (2014). The effect of nanostructure modification of the silicate binder on its binding characteristics and functional properties. Archives of Metallurgy and Materials. 59(3), 1033-1036. DOI: 10.2478/amm-2014-0173.
[15] Major-Gabryś, K., Dobosz, St.M., Jakubski, J. (2010). Self-hardened moulding sand with hydrated sodium silicate and liquid ester hardeners. In K. Świątkowski (Eds.), Polish Metallurgy in 2006-2010. (328-335). Krakow: Committee of Metallurgy of the Polish Academy of Science.
[16] Izdebska-Szanda, I. & Baliński, A. (2011). New generation of ecological silicate binders. Procedia Engineering. 10, 887-893. DOI: 10.1016/j.proeng.2011.04.146.
[17] Baliński, A. (2009). About structure of hydrated sodium silicate as a binder of moulding sands. Krakow: Foundry Research Institute.
[18] Izdebska-Szanda, I. (2012). Moulding sand with silicate binder characterized by beneficial technological and ecological properties. M.Sc. dissertation, Foundry Research Institute, Poland.
[19] Izdebska-Szanda, I., Stefański, Z., Pezraski, F. & Szolc, M. (2009). Effect of additives promoting the formation of lustrous carbon on the knocking out properties of foundry sands with new inorganic binders. Archives of Foundry Engineering. 9(1), 17 – 20.
[20] Izdebska-Szanda, I., Szanda, M. & Matuszewski, S. (2011). Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys. Archives of Foundry Engineering. 11(1), 43-48. ISSN (1897-3310).
[21] Zaretskiy, L. (2016). Modified silicate binders new developments and applications. International Journal of Metalcasting. 10(1), 88-99. DOI: 10.1007/s40962-015-0005-3.
[22] Josan, A., Pinca‐Bretotean, C. & Ratiuc, S. (2021). Management of the regeneration process of the moulding mixtures in order to reduce the costs of the foundry type industrial enterprises. Materials Today: Proceedings. 45, 4161-4165. DOI: 10.1016/j.matpr.2020.12.034
[23] Davis, J.R. (1998). Metals Handbook. Desk Edition (2nd ed.) Boca Raton:CRC Press.
Go to article

Authors and Affiliations

M. Bruna
1
ORCID: ORCID
I. Vasková
2
ORCID: ORCID
M. Medňanský
1
ORCID: ORCID
P. Delimanová
2
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Department of Technological Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  2. Institute Of Metallurgy, Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The reaction of alkalis with aggregate containing reactive forms of silica (ASR) plays a significant role in shaping the durability of concrete, as the strongly hygroscopic reaction products generated lead to internal stress, causing its expansion and cracking. This study presents an extended analysis of corrosive processes occurring in mortars with reactive natural aggregate from Poland, using computed tomography and scanning microscopy methods. Numerous cracks in the grains and the surrounding cementitious matrix were observed, indicating a high degree of advancement of corrosive processes. Over time, the proportion of pores with reduced sphericity increased, indicating ongoing degradation of the mortars. The usefulness of computed tomography in studying the progress of ASR was demonstrated. Scanning microscopy confirmed that the cause of mortar degradation is the formed ASR gel with a typical composition, located within the volume of reactive grains, cracks propagating into the cementitious matrix, and accumulated in air voids.
Go to article

Authors and Affiliations

Justyna Zapała-Sławeta
Download PDF Download RIS Download Bibtex

Abstract

This study explores the influence of alkali activators on the initiation of polymerization reaction of alumino-silicate minerals present in class-F fly ash material. Different types of fly ash aggregates were produced with silicate rich binders (bentonite and metakaolin) and the effect of alkali activators on the strength gain properties were analyzed. A comprehensive examination on its physical and mechanical properties of the various artificial fly ash aggregates has been carried out systematically. A pelletizer machine was fabricated in this study to produce aggregate pellets from fly ash. The efficiency and strength of pellets was improved by mixing fly ash with different binder materials such as ground granulated blast furnace slag (GGBS), metakaolin and bentonite. Further, the activation of fly ash binders was done using sodium hydroxide for improving its binding properties. Concrete mixes were designed and prepared with the different fly ash based aggregates containing different ingredients. Hardened concrete specimens after sufficient curing was tested for assessing the mechanical properties of different types concrete mixes. Test results indicated that fly ash -GGBS aggregates (30S2‒100) with alkali activator at 10M exhibited highest crushing strength containing of 22.81 MPa. Similarly, the concrete mix with 20% fly ash-GGBS based aggregate reported a highest compressive strength of 31.98 MPa. The fly ash based aggregates containing different binders was found to possess adequate engineering properties which can be suggested for moderate construction works.

Go to article

Authors and Affiliations

P. Gomathi
A. Sivakumar
Download PDF Download RIS Download Bibtex

Abstract

This paper details the properties, microstructures, and morphologies of the fly ash-based alkali-activated material (AAM), also known as geopolymers, under various steam curing temperatures. The steam curing temperature result in subsequent high strengths relative to average curing temperatures. However, detailed studies involving the use of steam curing for AAM remain scarce. The AAM paste was prepared by mixing fly ash with an alkali activator consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). The sample was steam cured at 50°C, 60°C, 70°C, and 80°C, and the fresh paste was tested for its setting time. The sample also prepared for compressive strength, density, and water absorption testings. It was observed that the fastest time for the fly ash geopolymer to start hardening was at 80°C at only 10 minutes due to the elevated temperature quickening the hydration of the paste. The compressive strength of the AAM increased with increasing curing time from 3 days to 28 days. The AAM’s highest compressive strength was 61 MPa when the sample was steam cured at 50°C for 28 days. The density of AAM was determined to be ~2122 2187 kg/m3, while its water absorption was ~6.72-8.82%. The phase analyses showed the presence of quartz, srebrodolskite, fayalite, and hematite, which indirectly confirms Fe and Ca’s role in the hydration of AAM. The morphology of AAM steam-cured at 50°C showed small amounts of unreacted fly ash and a denser matrix, which resulted in high compressive strength.
Go to article

Authors and Affiliations

Rafiza Abd Razak
1 2
ORCID: ORCID
Sh. Nur Syamimi Sy. Izman
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Zarina Yahya
1 2
ORCID: ORCID
Alida Abdullah
1
ORCID: ORCID
Rosnita Mohamed
1
ORCID: ORCID

  1. Universiti Malaysia Perlis, Geopolymer and Green Technology, Center of Excellence (CEGeoGTech), Kangar, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to test currently available on the market products for sealing anodic oxide coatings as well as to test the use of other alternative substances improving the sealing process. The ability to seal in 10 different solutions and the quality of the seal has been tested. The influence of the applied preparations on corrosion resistance and resistance to strongly alkaline environment was also investigated.

Based on the results obtained, satisfactory results were archived for the sample sealed in a IMN-OML (Institute of Non-Ferrous Metals in Gliwice, Light Metals Division) solution sealant and in solution of nickel acetate in a medium-temperature process. Sealing by means of nickel acetate solutions is economically justified, and its use allows the process temperature to be lowered. When it comes to resistance to alkalis, samples sealed in IMN-OML sealant are the best. Commercial solutions have also achieved positive results in all tests.

Go to article

Authors and Affiliations

A. Kozik
M. Nowak
K. Gędłek
D. Leśniak
J. Zasadziński
H. Jurczak
Download PDF Download RIS Download Bibtex

Abstract

The performance of adsorbent synthesized by alkali activation of aluminosilicate precursor metakaolin with sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as well as the foaming agent was studied for copper ions adsorption from aqueous solution. This paper investigated the effect of adding hydrogen peroxide (H2O2) and aluminium powder as foaming agents to an alkali activated materials slurry. The experimental range included 0.50 wt%, 0.75 wt%, and 1.00 wt% hydrogen peroxide and 0.02 wt%, 0.04 wt%, and 0.06 wt% aluminium powder. A control sample without a foaming agent was also created for comparison. The specific surface area, water absorption, density, compressive strength and microstructure of metakaolin based alkali activated materials were evaluated. The adsorption capability of Cu2+ with addition of hydrogen peroxide and aluminium powder was then tested. Results indicate hydrogen peroxide addition had superior pore size distribution and homogeneous porosity than aluminium powder, implying improved copper ion elimination. Cu2+ adsorption capability reached 98% with 0.75 wt% hydrogen peroxide and 24.6076 m2/g surface area. The results demonstrating that low cost metakaolin-based AAMs are the most effective adsorbent for removing copper ions.
Go to article

Authors and Affiliations

M. Ibrahim
1 2
ORCID: ORCID
W.M.W. Ibrahim
2 3
ORCID: ORCID
M.M. Al B. Abdullah
1 2
ORCID: ORCID
L.H. Mahamud
1
ORCID: ORCID
M.N.N. Tajuddin
1
ORCID: ORCID
Nur Faezah Yahya
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia

This page uses 'cookies'. Learn more