Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper details the properties, microstructures, and morphologies of the fly ash-based alkali-activated material (AAM), also known as geopolymers, under various steam curing temperatures. The steam curing temperature result in subsequent high strengths relative to average curing temperatures. However, detailed studies involving the use of steam curing for AAM remain scarce. The AAM paste was prepared by mixing fly ash with an alkali activator consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). The sample was steam cured at 50°C, 60°C, 70°C, and 80°C, and the fresh paste was tested for its setting time. The sample also prepared for compressive strength, density, and water absorption testings. It was observed that the fastest time for the fly ash geopolymer to start hardening was at 80°C at only 10 minutes due to the elevated temperature quickening the hydration of the paste. The compressive strength of the AAM increased with increasing curing time from 3 days to 28 days. The AAM’s highest compressive strength was 61 MPa when the sample was steam cured at 50°C for 28 days. The density of AAM was determined to be ~2122 2187 kg/m3, while its water absorption was ~6.72-8.82%. The phase analyses showed the presence of quartz, srebrodolskite, fayalite, and hematite, which indirectly confirms Fe and Ca’s role in the hydration of AAM. The morphology of AAM steam-cured at 50°C showed small amounts of unreacted fly ash and a denser matrix, which resulted in high compressive strength.
Go to article

Authors and Affiliations

Rafiza Abd Razak
1 2
ORCID: ORCID
Sh. Nur Syamimi Sy. Izman
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Zarina Yahya
1 2
ORCID: ORCID
Alida Abdullah
1
ORCID: ORCID
Rosnita Mohamed
1
ORCID: ORCID

  1. Universiti Malaysia Perlis, Geopolymer and Green Technology, Center of Excellence (CEGeoGTech), Kangar, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The performance of adsorbent synthesized by alkali activation of aluminosilicate precursor metakaolin with sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as well as the foaming agent was studied for copper ions adsorption from aqueous solution. This paper investigated the effect of adding hydrogen peroxide (H2O2) and aluminium powder as foaming agents to an alkali activated materials slurry. The experimental range included 0.50 wt%, 0.75 wt%, and 1.00 wt% hydrogen peroxide and 0.02 wt%, 0.04 wt%, and 0.06 wt% aluminium powder. A control sample without a foaming agent was also created for comparison. The specific surface area, water absorption, density, compressive strength and microstructure of metakaolin based alkali activated materials were evaluated. The adsorption capability of Cu2+ with addition of hydrogen peroxide and aluminium powder was then tested. Results indicate hydrogen peroxide addition had superior pore size distribution and homogeneous porosity than aluminium powder, implying improved copper ion elimination. Cu2+ adsorption capability reached 98% with 0.75 wt% hydrogen peroxide and 24.6076 m2/g surface area. The results demonstrating that low cost metakaolin-based AAMs are the most effective adsorbent for removing copper ions.
Go to article

Authors and Affiliations

M. Ibrahim
1 2
ORCID: ORCID
W.M.W. Ibrahim
2 3
ORCID: ORCID
M.M. Al B. Abdullah
1 2
ORCID: ORCID
L.H. Mahamud
1
ORCID: ORCID
M.N.N. Tajuddin
1
ORCID: ORCID
Nur Faezah Yahya
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia

This page uses 'cookies'. Learn more