Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Solanaceae plants have strong allelopathic potential, and therefore the action is confirmed through: a) bioassays with liquid or various solvent extracts and residues, b) fractionation, identification, and quantification of causative allelochemicals. Most assessments of allelopathy involve bioassays of plant or soil extracts, leachates, fractions, and residues which support seed germination and seedling growth in laboratory and greenhouse experiments. Plant growth is also stimulated below the allelopathic threshold, however severe growth reductions may be observed above the threshold concentration depending on the sensitivity of the receiving species. Generally, seedling growth is more sensitive than germination, particularly root growth. Some approaches showed that field soil collected beneath donor plants significantly reduced or somewhat promoted the growth of the recipients plants. Petri dish bioassays with aqueous extracts of different parts of donor plants showed considerable phytotoxic activities in a concentration-dependent manner with leaf aqueous extracts being most dominant. Delayed seed germination and slow root growth attributable to the extracts may be baffled with diffusion effects on the rate of imbibition, delayed initiation of germination, and particularly cell elongation; the main factor that is responsible for affecting root growth before and after the tip penetrates the testa. Light and electron microscopy extract analysis at the ultrastructural level are correctly investigated. Several Solanaceae plants have allelopathic potential, and therefore the activities, kinds and quantity of allelopathic compounds differ depending on the plant species. The incorporation of allelopathic substances into agricultural management might scale back the development of pesticides and reduce environmental deterioration.
Go to article

Authors and Affiliations

Mushtaq Waseem
Siddiqui Mohammad Badruzzaman
Download PDF Download RIS Download Bibtex

Abstract

Solanum elaeagnifolium Cav. is known to be one of the most invasive species worldwide. In this study, laboratory and greenhouse experiments were carried out to investigate the allelopathic properties of S. elaeagnifolium vegetative parts, root parts, fruit mucilage, and exudate extracts on plant communities and soil properties. In addition, the extract profiles of allelochemicals were quantified and their influence on soil properties and microorganisms was determined. Overall, the allelopathic performance of S. elaeagnifolium was established depending on the extract types, used concentrations, and target species. The doseresponse activity indicated that vegetative parts extract showed the greatest allelopathic potential followed by root parts extract. Subsequently, mucilage extract had a moderate inhibitory potential, while root exudates showed the least activity. The same trend with slight response was detected in soil properties of pH and EC properties. Polyphenols, in the range of 5.70–0.211 mg · g–1 and flavonols, in the range of 2.392–0.00 mg · g–1, were found in the analyzed samples extracted by ethyl acetate using LC-DAD-MS. The total phenol amount was 1.67 to 1.89 in the rhizosphere and 0.53 to 087 mg · g–1 in non-rhizosphere soils. Solanum elaeagnifolium exhibited a greater significant suppression of fungi count in both high and low-density areas than in rhizosphere bacteria. In conclusion, the strong and broadspectrum allelopathic potentials may enhance the ability of S. elaeagnifolium to impact seed germination and seedling growth of neighboring species. These biochemical weapons may play a critical role to facilitate their invasion and establishment in new agroecosystems.
Go to article

Authors and Affiliations

Mohamed A. Balah
1
Whaby M. Hassany
1
Abdelnasser A. Kobici
1

  1. Plant Protection Department, Desert Research Center, Matariya, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Two field experiments were established at the Agricultural Experimental Station of the National Research Centre at Nubaria, Beheira Governorate, Egypt to study the herbicidal potential of the leaf extract of Eucalyptus citriodora at 5, 10, 15, 20 and 25% compared to two hand hoeing, unweeded treatments and the chemical herbicides Bentazon + Clethodium, Bentazon + Fluazifop-P-butyl and Butralin on pea plants and associated weeds. The results indicated that two hand hoeing achieved the maximum weed depression as expressed by the dry matter of total weeds. The dry matter of total weeds decreased by 95.08 to 94.77% as compared with unweeded treatment 50 and 70 days after sowing (DAS) followed by Butraline (93.93–94.65%), Bentazon + Clethodium (93.26–94.07%), Bentazon + Fluazifop--P-butyl (91.82–92.77%) and leaf extract of Eucalyptus at 25% (91.61–91.95%). Furthermore, the reduction in weed development was accompanied by enhanced pea growth and yield. The results revealed that two hand hoeing was the best treatment to increase plant height, shoot dry weight and SPAD value at 50 and 70 DAS. Also, two hand hoeing produced the maximum values of pod length and number of seeds/pod. The results also indicated that Bentazon + Clethodium treatment gave observable values [recorded 72.96% in pod yield (ton ⋅ fed.–1) over that of unweeded control] of number of pod/plant, weight of pod/plant, seed yield/fed and protein percentage. Also, the results revealed great increases in the growth of pea as well as yield due to treatment with E. citriodora dry leaf extract at 25%. [recorded 64.8% in in pod yield (ton ⋅ fed.–1) over that of unweeded control]. So, the results indicated using Bentazon + Clethodium as well as E. citriodora dry leaf extract at 25% to control weeds associated with pea plants. The authors suggested application of E. citriodora dry leaf extract at 25% in controlling weeds associated with pea plants as a safe method that avoids environmental contamination.

Go to article

Authors and Affiliations

Ibrahim Mohamed El-Metwally
Kowthar Gad El-Rokiek
Download PDF Download RIS Download Bibtex

Abstract

Allelopathy is a complex phenomenon which depends on allelochemical concentrations. So, two pot experiments were carried out to investigate the allelopathic effect of alcoholic fresh shoot extract of Eruca sativa (foliar spray) and E. sativa shoot powder (mixed with soil) on Pisum sativum plants and two associated weeds, Phalaris minor and Beta vulgaris. The experiments were conducted in the greenhouse of the National Research Centre, Giza, Egypt during two successive winter seasons (2016–2017 and 2017–2018). Ten treatments were applied in this study. Four treatments were applied before sowing, that E. sativa shoot powder was mixed with the soil at rates of 15, 30, 45 and 60 g ⋅ pot–1. The other four treatments of E. sativa alcoholic fresh shoot extract were sprayed twice on both plants and weeds at 5, 10, 15 and 20% (w/v) concentrations. Additionally, two untreated treatments, healthy (P. sativum only) and unweeded (untreated infested P. sativum plants with weeds) were applied for comparison. The results indicated that both alcoholic extracts and powder reduced growth of both weeds. Moreover, there was a direct relationship between concentration and weed reduction. Eruca sativa alcoholic extracts increased yield parameters of P. sativum plants. The maximum yield attributes were recorded by spraying of E. sativa alcoholic extract at 20%. On the other hand, it was clearly noticed that the high powder rates affected negatively P. sativum yield parameters. But the lowest powder rate (15 g ⋅ pot–1) stimulated P. sativum yield parameters as compared to unweeded treatment. Chemical analysis of E. sativa shoot powder ensured that the abundant amount of glucosinolates (9.6 μmol ⋅ g–1) and phenolic compounds (46.5 mg ⋅ g–1) may be responsible for its allelopathic effect. In conclusion, spraying of alcoholic fresh shoot extract of E. sativa at 20% (w/v) and mixing E. sativa shoot powder at 15 g · pot–1can be applied as natural bioherbicides for controlling weeds.

Go to article

Authors and Affiliations

Mona Adel El-Wakeel
Salah El-Din Abd El-Ghany Ahmed
Ebrahim Roushdi El-Desoki
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate qualitative and quantitative chemical compounds of plant water extract (PWE), and the reduction potential of Corum herbicide (bentazone and imazamox) doses using PWE for weed control in faba bean fields. Chemical analysis revealed the presence of diverse allelochemicals including polyphenols, flavonoids, and terpenoids. The field experiment results showed clear differences between the measured traits in response to the applied treatments. The application of Corum at 1.5 l · ha –1, at 0.75 l · ha –1, and at 0.75 l · ha –1 + PWE significantly reduced weed density and biomass, with a weed control efficiency of 75.5–78.4, 57.4–53.3 and 68.2–56.9 % during the first-second cropping seasons, respectively. Meanwhile, Corum at 1.5 l · ha –1 and at 0.75 l · ha –1 + PWE treatments guaranteed approximately the same yield components and improved the faba bean yield (Q · ha –1) by 65 and 40% in 2018–2019 and by 91 and 85% in 2019–2020, respectively. Therefore, the results suggest that PWE in combination with a lower herbicide dose (up to 50%) could be used as a potential weed management strategy in faba bean. Further research is required to understand the phytotoxic mechanisms of the studied extract-herbicide mixtures and their modes of action.
Go to article

Authors and Affiliations

Boutagayout Abdellatif
1
ORCID: ORCID
Bouiamrine El Houssine
2 1
Adiba Atman
3
Yahbi Mohammed
4
Nassiri Laila
1
Belmalha Saadia
2

  1. The Environment and Soil Microbiology Unit, Faculty of Sciences-Moulay Ismail University, B.P.11201 Zitoune, Meknes, Morocco
  2. Department of Plant and Environment Protection, National School of Agriculture, Ecole Nationale d’Agriculture de Meknès, Route Haj Kaddour, Meknes, Morocco
  3. Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Sciences and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
  4. Department of Biology, Faculty of Science-Moulay Ismail University, Meknes, Morocco
Download PDF Download RIS Download Bibtex

Abstract

We examined the response of plants of various crop and weed species to cyanamide in order to evaluate allelochemical- mediated interactions between the species. We studied germination and seedling growth in the common weeds Galium aparine L. and Amaranthus retroflexus L., and the crops Zea mays L., Triticum aestivum L., Lactuca sativa L., Solanum lycopersicum L. and Sinapis alba L. as acceptor plants. Concentration-dependent phytotoxic effects of cyanamide were noted during seed germination and in the root and shoot growth of the tested plants. The monocotyledonous plants generally were less sensitive to cyanamide treatment. Seed germination and seedling growth of the dicotyledonous plants were strongly inhibited by the allelochemical at both tested concentrations (1.2 mM, 3 mM). We conclude that cyanamide has potential for use as a natural herbicide only in specific field systems of cyanamide-tolerant monocotyledonous crops accompanied by cyanamide-sensitive dicotyledonous weeds.

Go to article

Authors and Affiliations

Agnieszka Gniazdowska
Dorota Soltys
Renata Bogatek

This page uses 'cookies'. Learn more