Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Data
  • Type

Search results

Number of results: 466
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Heating of steel or structural aluminum alloys at a speed of 2 to 50 K/min – characterizing the fire conditions – leads to a reduction in mechanical properties of the analyzed alloys. The limit of proportionality fp, real fy and proof f₀₂ yield limit, breaking strength fu and longitudinal limit of elasticity E decrease as the temperature increases. Quantitative evaluation of the thermal conversion in strengths of structural alloys is published in Eurocodes 3 and 9, in the form of dimensionless graphs depicting reduction coefficients and selected (tabulated) discrete values of mechanical properties. The author’s proposal for an analytical formulation of code curves describing thermal reduction of elasticity modulus and strengths of structural alloys recommended for an application in building structures is presented in this paper.

Go to article

Authors and Affiliations

M. Gwóźdź
Download PDF Download RIS Download Bibtex

Abstract

Assessing the level of metallurgical and foundry technology in prehistoric times requires the examination of raw material finds, including elongated ingots, which served as semi-finished products ready for further processing. It is rare to find such raw material directly at production settlements, but Wicina in western Poland is an exception. During the Hallstatt period (800-450 BC), this area, situated along the middle Oder River, benefited from its favorable location in the heart of the Central European Urnfield cultures and developed networks for raw material exchange and bronze foundry production. Numerous remnants of casting activities, such as clay casting molds, casting systems, and raw materials, have been discovered at the Wicina settlement. This article aims to provide an archaeometallurgical interpretation of raw material management and utilization by prehistoric communities during the Early Iron Age. To achieve this, a collection of 31 ingots from the defensive settlement in Wicina, along with two contemporary deposits from Bieszków and Kumiałtowice, both found within a 20 km radius of the stronghold, were studied. Investigations were conducted using a range of methods, including optical microscopy(OM), scanning electron microscopy (SE M), energy-dispersive X-ray spectroscopy (SE M-EDS), X-ray fluorescence spectroscopy (ED-XRF), powder X-ray diffraction (PXRD), AAS and ICP-OES spectrometer. The significance of ingots is examined in the context of increasing social complexity and the rising popularity of bronze products, which necessitated diversified production and a demand for raw materials with different properties and, consequently, different chemical compositions.
Go to article

Authors and Affiliations

A. Garbacz-Klempka
1
ORCID: ORCID
K. Dzięgielewski
2
ORCID: ORCID
M. Wardas-Lasoń
3
ORCID: ORCID

  1. AGH University Of Krakow, Faculty of Foundry Engineering, Historical Layers Research Centre, ul. Reymonta 23, 30-059 Krakow, Poland
  2. Jagiellonian University, Institute of Archaeology, ul. Gołębia 11, 31-007 Krakow, Poland
  3. AGH University Of Krakow, Faculty of Geology, Geophysics And Environmental Protection, Historical Layers Research Centre, al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents changes in the production volume of castings made of non-ferrous alloys on the background of changes in total production of casting over the 2000-2019 period, both on a global scale and in Poland. It was found that the dynamics of increase in the production volume of castings made of non-ferrous alloys was distinctly greater than the dynamics of increase in the total production volume of castings over the considered period of time. Insofar as the share of production of the non-ferrous castings in the total production of castings was less than 16% during the first two years of the considered period, it reached the level of 20% in the last four years analysed. This share, when it comes to Poland, increased even to the greater degree; it grew from about 10% of domestic production of castings to over 33% within the regarded 2000-2019 period. The greatest average annual growth rate of production, both on a global scale and in Poland, was recorded for aluminium alloys as compared with other basic non-ferrous alloys. This growth rate for all the world was 4.08%, and for Poland 10.6% over the 2000-2019 period. The value of the average annual growth rate of the production of aluminium castings in Poland was close to the results achieved by China (12%), India (10.3%) and the South Korea (15.4%) over the same period of time. In 2019, the total production of castings in the world was equal to about 109 million tonnes, including over 21 million tonnes of castings made of non-ferrous alloys. The corresponding data with respect to Poland are about 1 million tonnes and about 350 thousand tonnes, respectively. In the same year, the production of castings made of aluminium alloys was equal to about 17.2 million tonnes in the world, and about 340 thousand tonnes in Poland.
Go to article

Bibliography

[1] Wübbenhorst, H. (1984). 5000 Jahre Giessen von Metallen. Ed. VDG Giesserei-Verlag GmbH, Düsseldorf.
[2] Orłowicz, A.W., Mróz, M., Tupaj, M. & Trytek, A. (2015). Materials used in the automotive industry. Archives of Foundry Engineering. 15(2), 75-78.
[3] Cygan, B., Stawarz, M. & Jezierski, J. (2018) Heat treatment of the SiMo iron castings – case study in the automotive foundry. Archives of Foundry Engineering. 18(4), 103-109.
[4] Bolat, C. & Goksenli, A. (2020) Fabrication optimization of Al 7075/Expanded glass syntactic foam by cold chamber die casting. Archives of Foundry Engineering. 20(3), 112- 118.
[5] Orłowicz, A.W., Mróz, M., Wnuk, G., Markowska, O., Homik, W. & Kolbusz, B. (2016). Coefficient of friction of a brake disc-brake pad friction couple. Archives of Foundry Engineering. 16(4), 196-200.
[6] Kmita, A. & Roczniak, A. (2017). Implementation of nanoparticles in materials applied in foundry engineering. Archives of Foundry Engineering. 17(3), 205-209.
[7] Jemielewski, J. (1970). Casting of non-ferrous metals. Warsaw: Ed. WNT. (In Polish)
[8] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2000). Casting. Warsaw: Ed. WNT. (In Polish)
[9] Kozana, J., Piękoś, M., Maj, M., Garbacz-Klempka, A. & Żak, P.L. (2020). Analysis of the microstructure, properties and machinability of Al-Cu-Si alloys. Archives of Foundry Engineering. 20(4), 145-153.
[10] Matejka, M., Bolibruchová, D. & Kuriš, M. (2021). Crystallization of the structural components of multiple remelted AlSi9Cu3 alloy. Archives of Foundry Engineering. 21(2), 41-45.
[11] Łągiewka, M. & Konopka, Z. (2012). The influence of material of mould and modification on the structure of AlSi11 alloy. Archives of Foundry Engineering. 12(1), 67- 70.
[12] Ščur, J., Brůna, M., Bolibruchová, D. & Pastirčák, R. (2017). Effect of technological parameters on the alsi12 alloy microstructure during crystallization under pressure. Archives of Foundry Engineering. 17(2), 75-78.
[13] Deev, V., Prusov, E., Prikhodko, O., Ri, E., Kutsenko, A. & Smetanyuk, S. (2020). crystallization behavior and properties of hypereutectic Al-Si alloys with different iron content. Archives of Foundry Engineering. 20(4), 101-107.
[14] Piątkowski, J. & Czerepak, M. (2020). The crystallization of the AlSi9 alloy designed for the alfin processing of ring supports in engine pistons. Archives of Foundry Engineering. 20(2), 65-70.
[15] Tupaj, M., Orłowicz, A.W., Trytek, A. & Mróz, M. (2019). Improvement of Al-Si alloy fatigue strength by means of refining and modification. Archives of Foundry Engineering. 19(4), 61-66.
[16] Soiński M.S., Jakubus A. (2020). Changes in the production of ferrous castings in Poland and in the world in the XXI century. Scientific and Technical Conference ‘Technologies of the Future’. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. Gorzów Wielkopolski, 25.09.2020. Forthcoming.
[17] Soiński M.S., Jakubus A. (2019). Structure of foundry production in Poland against the world trends in XXI century. in: Industry 4.0. Algorithmization of problems and digitalization of processes and devices. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. 2019. pp. 113-124. ISBN 978-83-65466-55-6.
[18] Soiński M.S, Jakubus A.(2019). Production of castings in Poland and in the world over the years 2000-2017. in: Industry 4.0. Algorithmization of problems and digitalization of processes and devices 2019. Conference 2018. Ed. of the Jacob of Paradies University in Gorzów Wielkopolski. pp. 73-92. ISBN 978-83-65466-90-7.
[19] Soiński, M.S., Skurka, K., Jakubus, A. & Kordas, P. (2015). Structure of foundry production in the world and in Poland over the 1974-2013 Period. Archives of Foundry Engineering. 15(spec.2), 69-76.
[20] Soiński, M.S., Skurka, K., Jakubus, A. (2015). Changes in the production of castings in Poland in the past half century in comparison with world trends”. in: Selected problems of process technologies in the industry. Częstochowa. Ed. Faculty of Production Engineering and Materials Technology of the Częstochowa University of Technology, 2015. Monograph. pp.71-79. ISBN: 978-83-63989-30-9.
[21] Soiński, M.S., Jakubus, A., Kordas, P. & Skurka, K. (2015). Production of castings in the world and in selected countries from 1999 to 2013. Archives of Foundry Engineering. 15(spec.1), 103-110. DOI: 10.1515/afe-2016-0017.
[22] Modern Casting. 35th Census of World Casting Production. December 2001. 38-39.
[23] Modern Casting. 36th Census of World Casting Production. December 2002. 22-24.
[24] Modern Casting. 37th Census of World Casting Production. December 2003. 23-25.
[25] Modern Casting. 38th Census of World Casting Production. December 2004. 25-27.
[26] Modern Casting. 39th Census of World Casting Production. December 2005. 27-29.
[27] Modern Casting. 40th Census of World Casting Production. December 2006. 28-31.
[28] Modern Casting. 41st Census of World Casting Production. December 2007. 22-25.
[29] Modern Casting. 42nd Census of World Casting Production. December 2008. 24-27
[30] Modern Casting. 43rd Census of World Casting Production. December 2009. 17-21.
[31] Modern Casting. 44th Census of World Casting Production. December 2010. 23-27.
[32] Modern Casting. 45th Census of World Casting Production. December 2011. 16-19.
[33] Modern Casting. 46th Census of World Casting Production. December 2012. 25-29.
[34] Modern Casting. 47th Census of World Casting Production. Dividing up the Global Market. December 2013. 18-23.
[35] Modern Casting. 48th Census of World Casting Production. Steady Growth in Global Output. December 2014. 17-21.
[36] Modern Casting. 49th Census of World Casting Production. Modest Growth in Worldwide Casting Market. December 2015. 26-31
[37] Modern Casting. 50th Census of World Casting Production. Global Casting Production Stagnant. December 2016. 25-29.
[38] Modern Casting. Census of World Casting Production. Global Casting Production Growth Stalls. December 2017. 24-28.
[39] Modern Casting. Census of World Casting Production. Global Casting Production Expands. December 2018. 23-26.
[40] Modern Casting. Census of World Casting Production. Total Casting Tons. Hits 112 Million. December 2019. 22- 25.
[41] Modern Casting. Census of World Casting Production Total Casting Tons Dip in 2019. January 2021. 28-30.
Go to article

Authors and Affiliations

M.S. Soiński
1
A. Jakubus
1
ORCID: ORCID

  1. The Jacob of Paradies University in Gorzów Wielkopolski, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work presents results of the investigations of effect of intensive cooling of alloy AC-AlSi7Mg with alloy additions on microstructure and mechanical properties of the obtained casts. The experimental casts were made in ceramic molds preliminarily heated to 180°C, into which AC-AlSi7Mg with alloy additions was poured. Within implementation of the research, a comparison was made of the microstructure and mechanical properties of the casts obtained in ceramic molds cooled at ambient temperature and the ones intensively cooled in a cooling liquid. Kinetics and dynamics thermal effects recorded by the TDA method were compared. Metallographic tests were performed with the use of optical microscope and strength properties of the obtained casts were examined: UTS, Elongation and HB hardness.

Go to article

Authors and Affiliations

B. Pisarek
C. Rapiejko
T. Pacyniak
Download PDF Download RIS Download Bibtex

Abstract

The present study, aims to investigate the effect of minor Zr and Nb alloying on soft magnetic and electrical properties of Fe86(ZrxNb1-x)7B6Cu1 (x = 1, 0.75, 0.5, 0.25) alloys. The investigated alloys were prepared through the melt spinning process. Within the examined compositional range (Nb up to 5.25at%, respectively), the soft magnetic properties and electrical resistivity of the alloys continuously increase with increasing Nb content. However increasing the Nb content further decreases such properties. We could confirm the influence of ratio of Zr and Nb on grain growth and crystallization fraction during crystallization by using the soft magnetic properties and electrical properties.

Go to article

Authors and Affiliations

Junghyun Noh
Seungyeon Park
Haejin Hwang
Kyoungmook Lim
Download PDF Download RIS Download Bibtex

Abstract

In this study, modification of the AZ91 magnesium alloy surface layer with a CO2 continuous wave operation laser has been taken on. The

extent and character of structural changes generated in the surface layer of the material was being assessed on the basis of both macro- and

microscopy investigations, and the EDX analysis. Considerable changes in the structure of the AZ91 alloy surface layer and the

morphology of phases have been found. The remelting processing was accompanied by a strong refinement of the structure and a more

uniform distribution of individual phases. The conducted investigations showed that the remelting zone dimensions are a result of the

process parameters, and that they can be controlled by an appropriate combination of basic remelting parameters, i.e. the laser power, the

distance from the sample surface, and the scanning rate. The investigations and the obtained results revealed the possibility of an effective

modification of the AZ91 magnesium alloy surface layer in the process of remelting carried out with a CO2 laser beam.

Go to article

Authors and Affiliations

J. Iwaszko
M. Strzelecka
Download PDF Download RIS Download Bibtex

Abstract

The multiple direct remelting of composites based on the A359 alloy reinforced with 20% of Al2O3 particles was performed. The results of both gravity casting and squeeze casting were examined in terms of the obtained microstructure and mechanical characteristics. In microstructure examinations, the combinatorial method based on phase quanta theory was used. In mechanical tests, the modified low cycle fatigue method (MLCF) was applied. The effects obtained after both gravity casting and squeeze casting were compared. It was noted that both characteristics were gradually deteriorating up to the tenth remelting. The main cause was the occurrence of shrinkage porosity after the gravity casting. Much better results were obtained applying the squeeze casting process. The results of microstructure examinations and fatigue tests enabled drawing the conclusion that the A359 alloy reinforced with Al2O3 particles can confer a much better fatigue life behavior to the resulting composite than the A359 alloy without the reinforcement. At the same time, comparing these results with the results of the previous own research carried out on the composites based also on the A359 alloy but reinforced in the whole volume with SiC particles, it has been concluded that both types of the composites can be subjected to multiple remelting without any significant deterioration of the structural and mechanical characteristics. The concepts and advantages of using the combinatorial and MLCF methods in materials research were also presented
Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
A. Klasik
J. Sobczak
A. Wojciechowski
Download PDF Download RIS Download Bibtex

Abstract

The main scope of the article is the development of a computer system, which should give advices at problem of cooper alloys

manufacturing. This problem relates with choosing of an appropriate type of bronze (e.g. the BA 1044 bronze) with possible modification

(e.g. calcium carbide modifications: Ca + C or CaC2) and possible heat treatment operations (quenching, tempering) in order to obtain

desired mechanical properties of manufactured material described by tensile strength - Rm, yield strength - Rp0.2 and elongation - A5. By

construction of the computer system being the goal of presented here work Case-based Reasoning is proposed to be used. Case-based

Reasoning is the methodology within Artificial Intelligence techniques, which enables solving new problems basing on experiences that

are solutions obtained in the past. Case-based Reasoning also enables incremental learning, because every new experience is retained each

time in order to be available for future processes of problem solving. Proposed by the developed system solution can be used by

a technologist as a rough solution for cooper alloys manufacturing problem, which requires further tests in order to confirm it correctness.

Go to article

Authors and Affiliations

S. Kluska-Nawarecka
K. Regulski
G. Rojek
D. Wilk-Kołodziejczyk
Download PDF Download RIS Download Bibtex

Abstract

The β phase (Al 12Mg 17) precipitated by heat treatment in some alloy compositions may result deterioration of corrosion resistance. However, much of its role remains unclear. The effect of the β phase on the corrosion resistance behavior in a NaCl solution was presented in this study. The specimen was Mg-9mass%Al (AM90) alloy and the content of the β phase precipitant was controlled systematically by aging time at 473 K. Area rate of β and lamellar phase in the specimens were 0, 10 and 100%, respectively. According to the results of cathodic polarization curves measurement, the corrosion current density of α phase was 0.215 A/m2 and β phase of it was 0.096 A/m2. While, the specimen includes 10% of β and lamellar phase showed large corrosion current density of 0.251 A/m2. Positive correlation between the β phase and the open circuit potential, suggest that the β phase acts as a cathodic electrode. Moreover, the microstructure after postentiostatic corrosion tests was also support the role of β phase.
Go to article

Authors and Affiliations

Masahiko Hatakeyama
1
ORCID: ORCID
Yusuke Shimada
2
ORCID: ORCID
Naoki Kawate
2
ORCID: ORCID
Kaede Sarayama
2
ORCID: ORCID
Satoshi Sunada
1
ORCID: ORCID

  1. University of Toyama, Graduate School of Materials Science and Engineering for Research, 3190 Gofuku, Toyama 930-8555, Japan
  2. University of Toyama, Graduate School of Materials Science and Engineering for Education, Japan
Download PDF Download RIS Download Bibtex

Abstract

Submitted work deals with the analysis of reoxidation processes for aluminium alloys. Due to the aluminium high affinity to the oxygen, the oxidation and consequently reoxidation will occur. Paper focuses on the gating system design in order to suppress and minimize reoxidation processes. Design of the gating system is considered as one of the most important aspect, which can reduce the presence of reoxidation products - bifilms. The main reason for the reoxidation occurrence is turbulence during filling of the mold. By correctly designing the individual parts of gating system, it is possible to minimize turbulence and to ensure a smooth process of the mold filling. The aim of the work is an innovative approach in the construction of gating system by using unconventional elements, such as a naturally pressurized system or vortex elements. The aim is also to clarify the phenomenon during the gating system filling by visualization with the aid of ProCAST numerical simulation software. ProCAST can calculate different indicators which allow to better quantify the filling pattern.

Go to article

Authors and Affiliations

A. Remišová
M. Brůna
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper covers the research on the process of solutionizing of 7075 aluminum alloy in cold tools during the stamping of a high-strength structural element (B-pillar’s base). For technological reasons, in order to obtain high strength parameters of the 7075 alloy, it is necessary to carry out a solutionization process, which allows to obtain dispersion strengthening during ageing process. Properly performed heat treatment of the alloy increases the strength of the material to approx. 600 MPa. The combination of the process of solutionization with simultaneous shaping is aimed at improving and simplifying technological operations of aluminum alloy stamping, shortening the duration of the manufacturing process and reducing production costs. The manufactured lower part of the B-pillar will be used for the verification of the validity of the developed method. During the experiment, a series of stamping tests were carried out, in which the lubricants, pressure and position of the upper and lower blankholders were the variables. The obtained results allow to estimate the influence of the cooling conditions on the strength of the drawpieces obtained after the process of artificial ageing. In order to verify and analyse the results more quickly, a numerical simulation was carried out.

Go to article

Authors and Affiliations

K. Jaśkiewicz
M. Skwarski
S. Polak
Z. Gronostajski
ORCID: ORCID
J. Krawczyk
ORCID: ORCID
P. Kaczyński
W. Chorzępa
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the impact of technological parameters on the heat transfer coefficient and microstructure in AlSi12 alloy using

squeeze casting technology. The casting with crystallization under pressure was used, specifically direct squeeze casting method. The goal

was to affect crystallization by pressure with a value 100 and 150 MPa. The pressure applied to the melt causes a significant increase of

the coefficient of heat transfer between the melt and the mold. There is an increase in heat flow by approximately 50% and the heat

transfer coefficient of up to 100-fold, depending on the casting conditions. The change in cooling rate influences the morphology of the

silicon particles and intermetallic phases. A change of excluded needles to a rod-shaped geometry with significantly shorter length occurs

when used gravity casting method. By using the pressure of 150 MPa during the crystallization process, in the structure can be observed an

irregular silica particles, but the size does not exceed 25 microns.

Go to article

Authors and Affiliations

D. Bolibruchová
R. Pastirčák
J. Ščury
M. Brůna
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of simulation of alloy layer formation process on the model casting. The first aim of this study was to

determine the influence of the location of the heat center on alloy layer’s thickness with the use of computer simulation. The second aim of

this study was to predict the thickness of the layer. For changes of technological parameters, the distribution of temperature in the model

casting and temperature changes in the characteristic points of the casting were found for established changes of technological

parameters. Numerical calculations were performed using programs NovaFlow&Solid. The process of obtaining the alloy layer with good

quality and proper thickness depends on: pouring temperature, time of premould hold at the temperature above 1300o

C. The obtained

results of simulation were loaded to authorial program Preforma 1.1 in order to determine the predicted thickness of the alloy casting

Go to article

Authors and Affiliations

J. Szajnar
C. Baron
A. Walasek
Download PDF Download RIS Download Bibtex

Abstract

The results of studies presented in this article are an example of the research activity of the authors related to lead-free alloys. The studies covered binary SnZn90 and SnZn95 lead-free alloys, including their microstructure and complex mechanical characteristics. The microstructure was examined by both light microscopy (LM) and scanning electron microscopy (SEM). The identification of alloy chemical composition in micro-areas was performed by SEM/EDS method. As regards light microscopy, the assessment was of both qualitative and quantitative character. The determination of the geometrical parameters of microstructure was based on an original combinatorial method using phase quantum theory. Comprehensive characterization of mechanical behavior with a focus on fatigue life of alloys was performed by means of the original modified low cycle fatigue method (MLCF) adapted to the actually available test machine. The article discusses the fatigue life of binary SnZn90 and SnZn95 alloys in terms of their microstructure. Additionally, the benefits resulting from the use of the combinatorial method in microstructure examinations and MLCF test in the quick estimation of several mechanical parameters have been underlined.

Go to article

Authors and Affiliations

K. Pietrzak
A. Klasik
M. Maj
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

The main reason of a cavitational destruction is the mechanical action of cavitation pulses onto the material’s surface. The course

of cavitation destruction process is very complex and depends on the physicochemical and structural features of a material. A resistance

to cavitation destruction of the material increases with the increase of its mechanical strength, fatigue resistance as well as hardness.

Nevertheless, the effect of structural features on the material’s cavitational resistance has been not fully clarified. In the present paper,

the cavitation destruction of ZnAl4 as cast alloy was investigated on three laboratory stands: vibration, jet-impact and flow stands.

The destruction mechanism of ZnAl4 as cast alloy subjected to cavitational erosion using various laboratory stands is shown in the present

paper.

Go to article

Authors and Affiliations

R. Jasionowski
D. Zasada
W. Polkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the studies of ternary SnZn9Al1.5 lead-free alloy from the viewpoint of its mechanical behavior as well as microstructure examined by the light and scanning electron microscopy. The authors focused their attention specifically on the fatigue parameters determined by the original modified low-cycle fatigue method (MLCF), which in a quick and economically justified way allows determination of a number of mechanical parameters based on the measurement data coming from one test sample only. The effect of the addition of 1.5% Al to the binary eutectic SnZn9 alloy on its microstructure and the obtained level of mechanical parameters was analyzed. The phases and intermetallic compounds occurring in the alloy were identified based on the chemical analysis carried out in micro-areas by the SEM/EDS technique. It was shown that the addition of 1.5% Al to the binary eutectic SnZn9 alloy resulted in a more favorable microstructure and consequently had a positive effect on the mechanical parameters of the alloy. Based on the conducted research, it was recommended to use a combinatorial method based on the phase quanta theory to quickly evaluate the microstructure and the original MLCF method to determine a number of mechanical parameters.
Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
A. Klasik
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl12Zn1 cast magnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. The apparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and 2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutectic and solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanical properties (hardness and ultimate compressive strength) and grain size are shifting with an increasing cooling rate.

Go to article

Authors and Affiliations

M. Król
L.A. Dobrzański
Download PDF Download RIS Download Bibtex

Abstract

The results of structure and mechanical properties investigations of tungsten heavy alloy (THA) after cyclic sintering are presented. The

material for study was prepared using liquid phase sintering of mixed and compacted powders in hydrogen atmosphere. The specimens in

shape of rods were subjected to different number of sintering cycles according to the heating schemes given in the main part of the paper

From the specimens the samples for mechanical testing and structure investigations were prepared. It follows from the results of the

mechanical studies, that increasing of sintering cycles lead to decrease of tensile strength and elongation of THA with either small or no

influence on yield strength. In opposite to that, the microstructure observations showed that the size of tungsten grain increases with

number of sintering cycles. Moreover, scanning electron microscope (SEM) observations revealed distinctly more trans-granular cleavage

mode of fracture in specimens subjected to large number of sintering cycles compared with that after one or two cycles only.

Go to article

Authors and Affiliations

P. Skoczylas
M. Kaczorowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents experimental results of creep and low cycle fatigue (LCF) tests carried out on the as-received cast aluminium alloys with different chemical composition and porosity. The test programmes contain creep investigations under step-increased stresses at different temperatures, and cyclic plasticity under different strain amplitudes and temperatures.

Go to article

Authors and Affiliations

Lech Dietrich
Agnieszka Rutecka
Zbigniew Kowalewski
Download PDF Download RIS Download Bibtex

Abstract

Titanium alloy (Ti-6Al-4V) has been extensively used in aircraft turbine-engine components, aircraft structural components, aerospace fasteners, high performance automotive parts, marine applications, medical devices and sports equipment. However, wide-spread use of this alloy has limits because of difficulty to machine it. One of the major difficulties found during machining is development of poor quality of surface in the form of higher surface roughness. The present investigation has been concentrated on studying the effects of cutting parameters of cutting speed, feed rate and depth of cut on surface roughness of the product during turning of titanium alloy. Box-Behnken experimental design was used to collect data for surface roughness. ANOVA was used to determine the significance of the cutting parameters. The model equation is also formulated to predict surface roughness. Optimal values of cutting parameters were determined through response surface methodology. A 100% desirability level in the turning process for economy was indicated by the optimized model. Also, the predicted values that were obtained through regression equation were found to be in close agreement to the experimental values.

Go to article

Authors and Affiliations

Niharika Niharika
B.P. Agrawal
Iqbal A. Khan
Zahid A. Khan
Download PDF Download RIS Download Bibtex

Abstract

Initial investigations on oxidation behaviour and phase transformations of equimolar AlCoCrCuNi high entropy alloy with and without 1 at.% silicon addition during 24-hr exposure to air atmosphere at 1273 K was carried out in this work. After determining the oxidation kinetics of the samples by means of thermogravimetric analysis, the morphology, chemical and phase compositions of the oxidized alloys were determined by means of scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analysis. Additional cross-section studies were performed using transmission electron microscopy combined with energy dispersive X-ray spectroscopy and selected area electron diffraction. From all these investigations, it can be concluded that minor silicon addition improves the oxidation kinetics and hinders the formation of an additional FCC structure near the surface of the material.
Go to article

Authors and Affiliations

R. Gawel
1
Ł. Rogal
2
ORCID: ORCID
K. Przybylski
1
Kenji Matsuda
3

  1. AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Physical Chemistry and Modelling, Al. Mickiewicza 30, 30 -059 Kraków, Poland
  2. Polish Academy of Sciences, Institute of Metallurgy and Materials, 25 Reymonta Str., 30-059 Kraków, Poland
  3. University of Toyama, Faculty of Sustainable Design, Department of Materials Design and Engineering, 3190 Gofuku, Toyama 930-8555, Japan
Download PDF Download RIS Download Bibtex

Abstract

Cu-Sn alloys have been known as bronze since ancient times and widely used as electrode materials, ornaments, tableware and musical instruments. Cu-22Sn alloy fabrication by hot forging process is a Korean traditional forged high-tin bronze. The tin content is 22 percent, which is more than twice that of bronze ware traditionally used in China and the West. Copper and tin have a carbon solubility of several ppm at room temperature, making Cu-Sn-C alloys difficult to manufacture by conventional casting methods. Research on the production of carbon-added copper alloys has used a manufacturing method that is different from the conventional casting method. In this study, Cu-22Sn-xC alloy was fabricated by mechanical alloying and spark plasma sintering. The carbon solubility was confirmed in Cu-Sn alloy through mechanical alloying. The lattice parameter increased from A0 to C2, and then decreased from C4. The microstructural characteristics of sintered alloys were determined using X-ray diffraction and microscopic analysis. As a result of comparing the hardness of Cu-22Sn alloys manufactured by conventional rolling, casting, and forging and Cu-22Sn-xC alloy by sintered powder metallugy, B0 sintered alloy was the highest at about 110.9 HRB.
Go to article

Authors and Affiliations

Gwanghun Kim
1
ORCID: ORCID
Jungbin Park
1
ORCID: ORCID
Seok-Jae Lee
1
ORCID: ORCID
Hee-Soo Kim
2
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
  2. Chosun University, Department of Materials Science and Engineering, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this paper, as a purpose to apply the supersaturated solid-solutionized Al-9Mg alloy to the structural sheet parts of automotive, tensile tests were conducted under the various conditions and a constitutive equation was derived from the tensile test results. Al-9Mg alloy was produced using a special Mg master alloy containing Al2Ca during the casting process and extruded into the sheet. In order to study the deformation behavior of Al-9Mg alloy in warm temperature forming environments, tensile tests were conducted under the temperature of 373 K-573 K and the strain rate of 0.001/s~0.1/s. In addition, by using the raw data obtained from tensile tests, a constitutive equation of the Al-9Mg alloy was derived for predicting the optimized condition of the hot stamping process. Al-9Mg alloy showed uncommon deformation behavior at the 373 K and 473 K temperature conditions. The calculated curves from the constitutive equation well-matched with the measured curves from the experiments particularly under the low temperature and high strain rate conditions.
Go to article

Bibliography

[1] P.F. Bariani, S. Bruschi, A, Ghiotti, F. Michieletto, CIRP Annals 62, 251-254 (2013). DOI: https://doi.org/10.1016/j.cirp.2013.03.050
[2] B.-H. Lee, S.-H. Kim, J.-H. Park, H.-W. Kim, J.-C. Lee, Materials Science and Engineering: A 657, 115-122 (2016). DOI: https://doi.org/10.1016/j.msea.2016.01.089
[3] D. Li, A. Ghosh, Materials Science and Engineering: A 352, 279- 286 (2003). DOI: https://doi.org/10.1016/S0921-5093(02)00915-2
[4] N.-S. Kim, K.-H. Choi, S.-Y. Yang, S.-H. Ha, Y.-O. Yoon, B.-H. Kim, H.-K. Lim, S.K. Kim, S.-K. Hyun, Metals 11, 288 (2021). DOI: https://doi.org/10.3390/met11020288
[5] H. Wang, Y. Luo, P. Friedman, M. Chen, L. Gao, Transactions of Nonferrous Metals Society of China 22, 1-7 (2012). DOI: https://doi.org/10.1016/S1003-6326(11)61131-X
[6] D. Li, A.K. Ghosh, Journal of Materials Processing Technology 145, 281-293 (2004). DOI: https://doi.org/10.1016/j.jmatprotec.2003.07.003
[7] R .C. Picu, Acta Materialia 52, 3447-3458 (2004). DOI: https://doi.org/10.1016/j.actamat.2004.03.042
[8] C.-H. Cho, H.-W. Son, J.-C. Lee, K.-T. Son, J.-W. Lee, S.-K. Hyun, Materials Science and Engineering: A 779, 139151 (2020). DOI: https://doi.org/10.1016/j.msea.2020.139151
[9] S.-Y. Yang, D.-B. Lee, K.-H. Choi, N.-S. Kim, S.-H. Ha, B.- H. Kim, Y.-O. Yoon, H.-K. Lim, S.K. Kim, Y.-J. Kim, Metals 11, 410 (2021). DOI: https://doi.org/10.3390/met11030410
[10] Q. Dai, Y. Deng, H. Jiang, J. Tang, J. Chen, Materials Science and Engineering: A, 766, 138325 (2019). DOI: https://doi.org/10.1016/j.msea.2019.138325
[11] L. Hua, F. Meng, Y. Song, J. Liu, X. Qin, L. Suo, J. of Materi Eng and Perform 23, 1107-1113 (2014). DOI: https://doi.org/10.1007/s11665-013-0834-2
[12] Y.Q. Cheng, H. Zhang, Z.H. Chen, K.F. Xian, Journal of Materials Processing Technology 208, 29-34 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.095
[13] L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang, Materials & Design 34, 179-184 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.07.060
[14] K.C. Chan, G.Q. Tong, Materials Letters 51, 389-395 (2001).
[15] https://www.sentesoftware.co.uk/site-media/flow-stress-curve
Go to article

Authors and Affiliations

Seung Y. Yang
1 2
ORCID: ORCID
Bong H. Kim
1
ORCID: ORCID
Da B. Lee
1
Kweon H. Choi
1
ORCID: ORCID
Nam S. Kim
1
ORCID: ORCID
Seong H. Ha
1
Young O. Yoon
1
Hyun K. Lim
1
ORCID: ORCID
Shae Kim
1
Young J. Kim
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Advanced Process and Materials R&D Group, KITECH, 156 Gaetbeol Rd., Yeonsu-gu, Incheon, 21999, Korea
  2. Sungkyunkwan University, Advanced Materials Science & Engineering, SKKU, Suwon, Korea
Download PDF Download RIS Download Bibtex

Abstract

Self-hardening aluminium alloys represent a new and interesting group of aluminium alloys. They have the advantage that they do not need to be heat treated, which is an important advantage that contributes to a significant reduction in production costs of some components and in the amount of energy used. The present paper deals with the possibility to replace the most used heat treatable AlSi7Mg0.3 cast alloys with a self-hardened AlZn10Si8Mg cast alloy. In this study, microstructural characterization of tensile and fatigue-tested samples has been performed to reveal if this replacement is possible. The results of fatigue tests show that AlSi7Mg0.3 alloy after T6 heat treatment and self-hardened AlZn10Si8Mg has comparable values of fatigue properties. The self-hardening alloy has slightly lower strength, ductility, and hardness.
Go to article

Authors and Affiliations

L. Kuchariková
1
ORCID: ORCID
L. Pastierovičová
1
ORCID: ORCID
E. Tillová
1
ORCID: ORCID
M. Chalupová
1
ORCID: ORCID
D. Závodská
1 2

  1. University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
  2. Schaeffler Slovakia, Kysucké Nové Mesto, Slovak Republic

This page uses 'cookies'. Learn more