Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Given the importance of renewable energy as it provides alternative energy sources over the traditional fossil fuel that is environmentally friendly, clean and renewable, this research aims to explore scholarly articles and books that present and investigate the challenges and barriers facing the implementation of renewable energy sources in Libya where the social, cultural, financial and awareness aspects are an important consideration against renewable energy. This study contains a review of all relevant, peer-reviewed, and published articles from journals, websites, books, conference proceedings and bulletins. An extensive literature review was carried out with the aim of researching renewable energy in Libya. This was done to take a realistic perspective of the community and the knowledge services accessible. The review of literature has shown that further renewables energy research remains necessary as the current conditions of the energy sector in Libya need to be examined to understand the challenges and difficulties to introduce renewable energy within competent authorities and businesses are examined in accordance with their managers. This indicates the need to conduct various studies in Libya to explore the various challenges, mostly financial and technological, that face the purposeful implementation of renewable energy resources in Libya. Additionally, the level of awareness and culture perception of the use of renewable energy is an important aspect to be considered as reported as barriers affecting the implementation of renewable energy in various parts of the world.
Go to article

Bibliography

2020 Predictions for the Global Economy and Markets 2020. [Online] https://www.investopedia.com/2020-predictions-for-the-global-economy-markets-and-investors-4780156 [Accessed: 2020-10-23].
Abdullahi, D. et al. 2017. Solar Energy Development and Implementation in Nigeria: Drivers and Barriers. DOI: 10.18086/swc.2017.16.01.
Adan H. et al. 2018 – Adan, H., Fuerst, F., Kavarnou, D. and Singh, R. 2018. Me or my house? Investigating the relative importance of household and dwelling characteristics for household energy consumption. [Online] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3254320 [Accessed: 2020- 06-24].
Ahadzie, D.K. et al. 2009. Towards developing competency-based measures for project managers in mass house building projects in developing countries. Construction Management and Economics 27(1), pp. 89–102, DOI: 10.1080/01446190802621028.
Ajredi et al. 2017 – Ajredi, M.A.S., Ayedh, A.M.A. and Haron, M.S. 2017. The Relationship between Real Exchange Rate and Components of the Broader Measure of Money Supply: An Analytical Study on the Libyan Economy. Journal of Insurance and Financial Management 3(3).
Al-Hamamre, Z. et al. 2017. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable and Sustainable Energy Reviews. Elsevier, 67, pp. 295–314.
Alweheshi, S. et al. 2019. Photovoltaic solar energy applications in Libya: a survey’. The 10th International Renewable Energy Congress (IREC), pp. 1–6, DOI: 10.1109/IREC.2019.8754527. [Online] https://www.researchgate.net/scientific-contributions/Shoroug-Alweheshi-2155953241 [Accessed: 2020-12- 05].
Ansari, M.F. et al. 2013. Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique. Renewable and sustainable energy reviews 27, pp. 163–174.
Armaroli, N. and Balzani, V. 2007. The future of energy supply: challenges and opportunities. Angewandte Chemie International Edition 46(1–2), pp. 52–66.
Atadashi et al. 2012 – Atadashi, I.M., Aroua, M.K., Abdul Aziz, A.R. and Sulaiman, N.M.N. 2012. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry 19(1), pp. 14–26, DOI: 10.1016/j.jiec.2012.07.009.
Badi, I.A. et al. 2018. A grey-based assessment approach to the site selection of a desalination plant in Libya. Grey Systems: Theory and Application, DOI: 10.1108/GS-01-2018-0002.
Blanchard, C.M. 2016. Libya: Transition and US policy. Washington United States: Congressional Research Service. [Online] https://sgp.fas.org/crs/row/RL33142.pdf [Accessed: 2020-09-22].
Bolesta, A. 2018. Myanmar-China peculiar relationship: Trade, investment and the model of development. Journal of International Studies 11(2), pp. 23–36.
Bussar, C. et al. 2014. Optimal allocation and capacity of energy storage systems in a future European power system with 100% renewable energy generation. Energy Procedia 46, pp. 40–47, DOI: 10.1016/j.egypro.2014.01.156.
Capasso, M. 2020. The war and the economy: the gradual destruction of Libya. Review of African Political Economy 47, pp. 1–23.
CBL 2009. Economic Bulletin for the Fourth Quarter of 2009. Tripoli, Libya.
Central Bank of Libya 2005. [Online] https://cbl.gov.ly/en/[Accessed: 2021-02-20].
CIA 2016. Central Intelligence Agency-The World Factbook.
Collotta, M. et al. 2018.Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal research 29, pp. 12–21.
Deigaard, R. and Nielsen, P. 2018. Wind generation of waves: Energy and momentum transfer – An overview with physical discussion. Coastal Engineering 139, pp. 36–46.
Doğanalp, N. 2018. The nexus between renewable energy and sustainable development: a panel data analysi̇s for selected eu countries. Journal of Social And Humanities Sciences Research (JSHSR) 5(29), pp. 3966–3973, DOI: 10.26450/jshsr.884.
Etelawi et al. 2017 – Etelawi, A.M., Blatner, K.A. and McCluskey, J. 2017. Crude Oil and the Libyan Economy. International Journal of Economics and Finance 9(4), pp. 95–104.
Feron, S. 2016. Sustainability of off-grid photovoltaic systems for rural electrification in developing countries: A review. Sustainability 8(12), pp. 1–26, DOI: 10.3390/su8121326.
GPCEWGL 2008. The Libyan General people’s Committee for Electricity, Water and Gas. Annual Report. Tripoli – Libya.
GPCFAAL 2007. The General People’s Committee of The Financial Audit Authority. Tripoli – Libya.
He, Z.X. et al. 2018. Factors that influence renewable energy technological innovation in China: A dynamic panel approach. Sustainability 10(1), DOI: 10.3390/su10010124.
Herbert, G.M.J. and Krishnan, A.U. 2016. Quantifying environmental performance of biomass energy. Renewable and Sustainable Energy Reviews 59, pp. 292–308.
Herington, M.J. et al. 2017. Rural energy planning remains out-of-step with contemporary paradigms of energy access and development. Renewable and Sustainable Energy Reviews 67, pp. 1412–1419.
Van Horne, C. and Dutot, V. 2017. Challenges in technology transfer: an actor perspective in a quadruple helix environment. The Journal of Technology Transfer 42(2), pp. 285–301.
Jolly, W.M. et al. 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications. Nature Publishing Group, 6(May), pp. 1–11, DOI: 10.1038/ncomms8537.
Kassem et al. 2020 – Kassem, Y., Çamur, H. and Aateg, R.A.F. 2020. Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libyax. Energies 13(14), p. 3708.
Khalifa et al. 2019 – Khalifa, R., Dabab, M. and Barham, H. 2019. A preliminary strategic framework for enhancing the sustainability of international technology transfer: The case of Libya. PICMET 2019 – Portland International Conference on Management of Engineering and Technology: Technology Management in the World of Intelligent Systems, Proceedings, 1–9, DOI: 10.23919/PICMET.2019.8893662.
Khalil, A. and Asheibe, A. 2015. The chances and challenges for renewable energy in Libya. The Proceedings of the Renewable Energy Conference (November 2015), pp. 1–6.
Khan, K.A. et al. 2018. Renewable energy scenario in Bangladesh. IJARII 4(5), pp. 270–279.
Khare et al. 2013 – Khare, V., Nema, S. and Baredar, P. 2013. Status of solar wind renewable energy. Renewable and Sustainable Energy Reviews 27(1), pp. 1–10.
Khare et al. 2017 – Khare, Vikas, Nema, S. and Baredar, P. 2013. Status of solar wind renewable energy in India. Renewable and Sustainable Energy Reviews 27, pp. 1–10, DOI: 10.1016/j.rser.2013.06.018.
Khojasteh et al. 2016 – Khojasteh, D., Khojasteh, D. and Kamali, R. 2016. Wave Energy Absorption by Heaving Point Absorbers at Caspian Sea. 24th Annual International Conference on Mechanical Engineering- ISME. Yazd, Iran (April). 156 157
Komoto, K. et al. 2009. Energy from the desert: Very Large scale photovoltaic systems: Socio-economic, financial, technical and environmental aspects. Energy from the Desert: Very Large Scale Photovoltaic Systems: Socio-economic, Financial, Technical and Environmental Aspects, pp. 1–190, DOI: 10.4324/9781849770064.
Kumar, D. and Katoch, S.S. 2014. Sustainability indicators for run of the river (RoR) hydropower projects in hydro rich regions of India. Renewable and Sustainable Energy Reviews 35, pp. 101–108.
Luthra, S. et al. 2015. Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renewable and sustainable energy reviews 41, pp. 762–776.
Martinez-Manuel, L. 2021. Flux solar simulator for the development of thesis that to obtain the degree of doctor of Science (optics) Presents: Leopoldo Martínez-Manuel (April).
Mercer, N. 2016. Barriers to renewable energy development in newfoundland and labrador: a case study of wind energy applying the ‘aktesp’ framework for analysis.
Mirkouei, A. et al. 2017. A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework. Applied Energy 206(May), pp. 1088–1101, DOI: 10.1016/j.apenergy.2017.09.001.
Mohamed, A.M.A. 2016. Investigation into the feasibility of the utilisation of renewable energy resources in Libya (Doctoral dissertation, Nottingham Trent University).
Mohamed et al. 2019 – Mohamed, A.M.A., Elabar, S.M., Shakmak, B.H.M. and Al-Habaibeh, A. 2019 Exploring the sustainable economy and energy for Libya’s future. Nottingham Trent University: Publications. [Online] http://irep.ntu.ac.uk/id/eprint/29037/ [Accessed: 2021-03-05].
Mohamed et al. 2017 – Mohamed, A.M.A., Al-Habaibeh, A. and Abdo, H. 2016. Future prospects of the renewable energy sector in Libya. Conference: Sustainable Built Environment. [In:] SBE16 Dubai Conference, Dubai, United Arab Emirates.
Mohamed, O.A. and Masood, S.H. 2018. A brief overview of solar and wind energy in Libya: Current trends and the future development. [In:] IOP Conference Series: Materials Science and Engineering 377(1), DOI: 10.1088/1757-899X/377/1/012136.
Murshed, M. 2020. Are Trade Liberalization policies aligned with Renewable Energy Transition in low and middle income countries? An Instrumental Variable approach. Renewable Energy 151, pp. 1110– –1123, DOI: 10.1016/j.renene.2019.11.106.
Nasar, M. and Elzentani, H. 2016. Smart Roads to Generate Energy in Libya: Survey. Environment & Ecology 34(3A), pp. 1088–1092.
Nengroo et al. 2018 – Nengro, S.H., Kamran, N.A., Ali, M.U., Kim, D.-H., Kim, M.-S., Hussain, A. and Kim, H.-J. 2018. Dual battery storage system: An optimized strategy for the utilization of renewable photovoltaic energy in the United Kingdom. Electronics 7(9), p. 177. OPEC 2016. [Online] https://www.opec.org/opec_web/en/search.jsp? [Accessed: 2020-06-27].
Otman, W. and Karlberg, E. 2007. The Libyan economy: economic diversification and international repositioning. Springer Science & Business Media, DOI: 10.1007/3-540-46463-8.
Paravantis et al. 2018 – Paravantis, J., Mihalakakou, G., Stigka, E. and Evanthie, M. 2018. Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece. Renewable Energy 123, pp. 639–651.
Patil, D. 2018. Sustainable Bio-Energy Through Bagasse Co-Generation Technology: a Pestel Analysis of Sugar Hub of India, Solapur. Journal of Emerging Technologies and Innovative Research 5(12), pp. 661–669.
Piwowar, A. and Dzikuć, M. 2019. Development of renewable energy sources in the context of threats resulting from low-altitude emissions in Rural Areas in Poland: A review. Energies 12(18), DOI: 10.3390/en12183558.158
Pueyo, A. 2018. What constrains renewable energy investment in Sub-Saharan Africa? A comparison of Kenya and Ghana. World Development 109, pp. 85–100.
Le Quéré, C. et al. 2017. Global_Carbon_Budget. Earth System Science Data (November).
Reddy, S. and Painuly, J.P. 2004. Diffusion of renewable energy technologies – barriers and stakeholders’ perspectives. Renewable Energy 29(9), pp. 1431–1447. Renewable energy statistics 2020. Online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title =Renewable_energy_statistics.
Seetharaman et al. 2019 – Seetharaman, A., Krishna Moorthy, M. and Nitin, P. 2019. Breaking barriers in deployment of renewable energy. Heliyon. Elsevier Ltd. 5(1), DOI: 10.1016/j.heliyon.2019.e01166.
Sharma, A.K. and Thakur, N.S. 2017. Energy situation, current status and resource potential of run of the river (RoR) large hydro power projects in Jammu and Kashmir: India. Renewable and Sustainable Energy Reviews 78, pp. 233–251.
Shibin et al. 2016 – Shibin, K.T., Gunasekaran, A., Papadopoulos, T., Dubey, R., Singh, M. and Fosso Wamba, S. 2016. Enablers and barriers of flexible green supply chain management: A total interpretive structural modeling approach. Global Journal of Flexible Systems Management 17(2), pp. 171–188.
Sindhu et al. 2016 – Sindhu, S., Nehra, V. and Luthra, S. 2016. Identification and analysis of barriers in implementation of solar energy in Indian rural sector using integrated ISM and fuzzy MICMAC approach. Renewable and Sustainable Energy Reviews 62, pp. 70–88.
Solangi et al. 2019 – Solangi, Y.A., Tan, Q., Mirjat, N.H., Valasai, G.D., Khan, M.W.A. and Ikram, M. 2019. An integrated Delphi-AHP and fuzzy TOPSIS approach toward ranking and selection of renewable energy resources in Pakistan. Processes 7(2), pp. 1–31, DOI: 10.3390/pr7020118.
Strantzali, E. and Aravossis, K. 2016. Decision making in renewable energy investments: A review. Renewable and Sustainable Energy Reviews 55, pp. 885–898, DOI: 10.1016/j.rser.2015.11.021.
Suckling, J.H. and Frasier, J.T. 2015. Adoption of the paris agreement. Experimental Mechanics 8(11), pp. 513–519, DOI: 10.1007/BF02327128.
Suman, S.K. and Ahamad, J. 2018. Solar energy potential and future energy of India: an overview. International Journal of Engineering Science, p. 17575.
Suzuki et al. 2010 – Suzuki, M., Kehdy, B.O. and Jain, S. 2010. Identifying barriers for the implementation and the operation of biogas power generation projects in Southeast Asia: An analysis of clean development mechanism projects in Thailand. Economics and Management Series Working Paper, EMS–2010–20, International University of Japan, Japan.
Tomar et al. 2017 – Tomar, V., Tiwari, G. and Norton, B. 2017. Solar dryers for tropical food preservation: Thermophysics of crops, systems and components. Solar Energy 154, pp. 2–13.
Trutnevyte, E. et al. 2016. Energy scenario choices: Insights from a retrospective review of UK energy futures. Renewable and Sustainable Energy Reviews 55, pp. 326–337, DOI: 10.1016/j.rser.2015.10.067.
UNFCCC 2020. [Online] https://unfccc.int/climate-action/introduction-climate-action [Accessed: 2020-12-08]. U.S. Energy Information Administration 2019. [Online] https://www.eia.gov/ [Accessed: 2020-12-08].
Worldometers 2016a. [Online] https://www.worldometers.info/oil/libya-oil/ [Accessed: 2020-12-08].
Worldometers 2016b. [Online] https://www.worldometers.info/gas/ [Accessed: 2020-12-08].
Worldometer 2020. Libya Population. [Online] https://www.worldometers.info/world-population/libya-population/ [Accessed: 2020-12-08].
Go to article

Authors and Affiliations

Mussa Mohamed Bahour
1
ORCID: ORCID
M.F.M. Alkbir
2
Fatihhi Januddi
2
Adnan Bakri
2

  1. Business School, University Kuala Lumpur, Malaysia
  2. Advance Facilities Engineering Technology Research Cluster (AFET-RC); Facilities Maintenance Engineering Section (FAME), Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur (UniKL MITEC), Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750, Johor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The Ukrainian energy sector’s crucial problems, in particular, the outmoded equipment, the power

infrastructure shortcoming and a significant backlog in the energy supply quality from the European

one, based on the SAIDI (System Average Interruption Duration Index) indicator comparison,

has been disclosed in this article. A considerable break in the energy supply quality in both

rural and urban settlements has been also revealed. The current state of the alternative energy development

has been described, the energy generation structure, as well as the rates of development

of the renewable energy sources’ usage have been analyzed. Some challenges in the imbalance of

the renewable energy sources’ usage and their analyzed consequences have been identified, among

others, the generation volume abruptness by both SPP and WPP, requiring maneuvering with the

traditional sources’ employer. The negative effect of the “green” tariff as the main priming stimulus

for the renewable energy facilities’ construction has been proven. Generally and particularly, the

financial influence level on the state has been analyzed, being manifested in the debts’ accumulation

to energy producers. The residual capability of solving the problems of alternative energy

development has been considered, in particular, the “green” auctions announced by the state, the

formation of the optimal predicted level of energy generation by SPP and WPP in order to prevent

sharp disparities in both electricity demand and supply. The biogas plants’ facilities as a ponderable

choice to both solar and wind generation have been analyzed.

Go to article

Authors and Affiliations

Viktoriia Dergachova
Zhanna Zhygalkevych
Yevhen Derhachov
Yana Koleshnia
Download PDF Download RIS Download Bibtex

Abstract

The specificities of the sowing and harvesting campaign of 2022–2023 in Ukraine and its impact on the world energy and food market in the conditions of the full-scale invasion of Ukraine by the Russian Federation are analyzed in this paper. The purpose of the study is to determine the role of Ukraine in ensuring energy and global food security, to analyse the situation regarding the possibility of conducting a sowing and harvesting campaign in Ukraine in the conditions of hostilities and to provide recommendations on preserving the potential of Ukraine in meeting the energy and food needs of Ukraine and other countries. The provided analysis of data of the Food and Agriculture Organization (FAO), the State Customs Service and the State Statistics Service of Ukraine has confirmed the role of Ukraine in ensuring energy and food safety of many countries in the Middle East and North Africa, which are the main importers of agricultural products from Ukraine. It has been found that the 2022–2023 sowing and harvesting campaign in Ukraine is facing a number of problems, including: military operations over a large area, which makes it impossible to conduct agrotechnical activities in a timely manner; a lack of seed material due to its systematic destruction by the Russian military; problems with the supply of fuel and lubricants (systematic shelling and destruction of oil bases throughout Ukraine); problems with the supply of fertilizers; bombing wheat fields and food warehouses; blocking Ukrainian sea ports; mobilization of a significant part of the population in the ranks of the Armed Forces of Ukraine; logistics problems. The study proposes recommendations to preserve the potential for meeting energy and food needs in Ukraine and for countries importing agricultural products from Ukraine.
Go to article

Authors and Affiliations

Natalia Pryshliak
1
ORCID: ORCID
Vitalii Dankevych
2
ORCID: ORCID
Dina Tokarchuk
1
ORCID: ORCID
Oleksandr Shpykuliak
3
ORCID: ORCID

  1. Department of Administrative Management and Alternative Energy Sources, Vinnytsia National Agrarian University, Vunnytsia, Ukraine
  2. Faculty of Law Public Administration and National Security, Polissya National University, Ukraine
  3. National Scientific Center “Institute of Agrarian Economics”, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper is focused on use of renewable energy sources for energy production with special attention paid to the biomass wastes. Type and potential of wastes biomass, which can be used for production of electric and thermal energy, were generally characterized, use of the biomass as energy source in Poland was discussed, existing reserves were estimated and basic strategic-and-legal acts, which refer to the considered problem were presented. A type of possible activities to increase the amount of alternative energy produced in Poland, in the light of requirement to achieve a determined ecological-and-energy target resulting from international agreements and EU legislation, were indicated.
Go to article

Authors and Affiliations

Danuta Domańska
Tomasz Zacharz
Download PDF Download RIS Download Bibtex

Abstract

This article discusses the advantages of using renewable energy resources (RES), analyzes the resource potential of Ukraine in terms of energy production and substantiates the benefits of using RES for energy security. It explores the potential of the existing technological infrastructure for the sustainable development of the energy industry in Ukraine. It also identifies the structure of energy capacities and the technically achievable potential of energy production from RES and alternative fuels as a basis for different scenarios for the prospective development of alternative energy in Ukraine.
The development of solar, wind and bioenergy is analyzed in line with policy recommendation traced with the dynamics of the final volume of energy consumption in Ukraine.
This enables improvements to the methodology for determining the target parameters of energy security with the available resource potential, which forms the basis for the dynamics models of integral indices of components of energy security. These models demonstrate the current state of energy security of Ukraine in terms of resource potential, economic sufficiency, and institutional and organizational support for the use of energy resources.
The article suggests the key management directions of energy policy in Ukraine and the mechanism of emergency response to the shortage of energy supply. The development of alternative energy is considered as a path to the energy independence of the national economy of Ukraine and Europe.
Go to article

Authors and Affiliations

Nataliia Antoniuk
1
ORCID: ORCID
Joanna Kulczycka
2
ORCID: ORCID

  1. Department of Philosophy, Economics and Management of Education, Rivne Regional Institute of Postgraduate Pedagogical Education, Ukraine
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, AGH University of Science and Technology, Kraków, Poland

This page uses 'cookies'. Learn more