Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Aluminum profiles play an important role in civil engineering (facades, walls with windows) as well as in mechanical engineering (production lines, constructions of 3D printers and plotters). To ensure quick assembly, disassembly or changed the dimensions of constructions it is not possible to use such methods as welding, adhesive or riveting joints. The solution may be to use the so-called “popular lock”. It is a mechanism, the closure of which is caused by tightening of the conical screw, joining the “T” profile in the node. In order to properly design using the presented type of connection, it is necessary to know its strength and stiffness both in simple and complex loads states, also including imperfections. In the literature there is no information about the operation of the construction node with the so-called “popular lock”. The paper presents the results of experimental tests for connections subjected to uniaxial tensile test, paying special attention to the defects that may appear during the assembly. In the next step, a 3D solid connection model was created. Numerical simulations were performed in the Abaqus / Explicite program for both uniaxial tensile test and bending tests in two planes. Limit values of loads above which there is a plastic deformation of the material were determined. Determination of stiffness and strength of a single node allowed to make a simplified connector model. Using the numerical model, the analysis was performed taking into account the influence of imperfections on the work of the entire connection.

Go to article

Authors and Affiliations

P. Golewski
T. Sadowski
Download PDF Download RIS Download Bibtex

Abstract

Thermochemical treatment processes are used to produce a surface layer of the workpiece with improved mechanical properties. One of the important parameters during the gas nitriding processes is the temperature of the surface. In thermochemical treatment processes, there is a problem in precisely determining the surface temperature of heat-treated massive components with complex geometries. This paper presents a simulation of the heating process of a die used to extrude aluminium profiles. The maximum temperature differences calculated in the die volume, on the surface and at the most mechanically stressed edge during the extrusion of the aluminum profiles were analysed. The heating of the die was simulated using commercial transient thermal analysis software. The numerical calculations of the die assumed a boundary condition in the form of the heat transfer coefficient obtained from experimental studies in a thermochemical treatment furnace and the solution of the nonstationary and non-linear inverse problem for the heat conduction equation in the cylinder. The die heating analysis was performed for various heating rates and fan settings. Major differences in the surface temperature and in the volume of the heated die were obtained. Possible ways to improve the productivity and control of thermochemical treatment processes were identified. The paper investigates the heating of a die, which is a massive component with complex geometry. This paper indicates a new way to develop methods for the control of thermochemical processing of massive components with complex geometries.
Go to article

Authors and Affiliations

Damian Joachimiak
1
Wojciech Judt
1
Magda Joachmiak
1

  1. Poznan University of Technology, Institute of Thermal Engineering, Piotrowo 3a, 60-965, Poznan, Poland

This page uses 'cookies'. Learn more