Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 50
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This electronic paper presents an innovative technology for efficient use of the radio spectrum. This new frequency reconfigurable rotatable antenna is intended for wireless applications such as WLAN, WiMAX and Bluetooth mobile applications. The working principle of this proposed work is to print square patches mounted on the same circular dielectric substrate feed by a proximity coupling to eliminate the noise signal transmission and problems related to interference. The three positions correspond to an operating frequency controlled by a bipolar step-by-step engine. An optimization of the structure using the FEM finite element method as well as a comparison with other structures recently realized are detailed in this paper. The final numerical simulation results are: WLAN 4.95-5.53 GHz (BW = 11%) Gain = 6.06 dBi, WiMAX 3.35-3.75 GHz (BW = 11.2%) Gain = 7.48 dBi and Bluetooth 2.3-2.51 GHz (BW = 8.7%) Gain = 17.78 dBi.

Go to article

Authors and Affiliations

Aziz El Fatimi
Seddik Bri
Adil Saadi
Download PDF Download RIS Download Bibtex

Abstract

A simulation-based optimization approach to design of phase excitation tapers for linear phased antenna arrays is presented. The design optimization process is accelerated by means of Surrogate-Based Optimization (SBO); it uses a coarse-mesh surrogate of the array element for adjusting the array’s active reflection coefficient responses and a fast surrogate of the antenna array radiation pattern. The primary optimization objective is to minimize side-lobes in the principal plane of the radiation pattern while scanning the main beam. The optimization outcome is a set of element phase excitation tapers versus the scan angle. The design objectives are evaluated at the high fidelity level of description using simulations of the discrete electromagnetic model of the entire array so that the effects of element coupling and other possible interaction within the array structure are accounted for. At the same time, the optimization process is fast due to SBO. Performance and numerical cost of the approach are demonstrated by optimizing a 16-element linear array of microstrip antennas. Experimental verification has been carried out for a manufactured prototype of the optimized array. It demonstrates good agreement between the radiation patterns obtained from simulations and from physical measurements (the latter constructed through superposition of the measured element patterns).

Go to article

Authors and Affiliations

Sławomir Kozieł
Stanislav Ogurtsov
Adrian Bekasiewicz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a series of designed microstrip antennas with different gain and width radiation characteristics and intended for use in Wi-Fi systems. These antennas in a multilayer system were analyzed with the use of computer programs, and then the parameters and characteristics of these antennas were measured. At the same time, to check the correctness of work, additional measurements of the temperature of the radiators were used with a thermal imaging camera. The obtained results were compared with the results of calculations and measurements. They show high compliance with both calculations and measurements. At the same time, thermovision measurements show the weaknesses of the designed power lines.
Go to article

Bibliography

[1] Sharma R., Mithilesh Kumar, Dual band planar microstrip antenna for 2.5/5.8 GHz wireless cellular applications, International Journal on Communications Antenna and Propagation, vol. 3, no. 2, pp. 90–96 (2013).
[2] Nelson I.O., Ademola A.Y., Patch antenna array feed design for a dish antenna, International Journal on Communications Antenna and Propagation, vol. 3, no. 5, pp. 261–266 (2013).
[3] Maloney J.G., Smith G.S., Scott W.R., Accurate computation of radiation from simple antenas using finite – difference time domain method, IEEE Trans. Antennas and Propagation, vol. 38 (1990).
[4] Ghaderi B., Parhizgar N., Resource allocation in MIMO systems specific to radio communication, Archives of Electrical Engineering, vol. 68, no. 1, pp. 91–100 (2019).
[5] Parhizgar N., A new mutual coupling compensation method for receiving antenna array-based DOA estimation, Archives of Electrical Engineering, vol. 67, no. 2 (2018).
[6] Bielecki Z.,Rogalski A., Optical signals detection, Scientific and Technical Publishing, Warsaw(2001).
[7] MinkinaW., Thermovision measurements – instruments and methods, Publishing House of the Czestochowa University of Technology, Czestochowa (2004).
[8] Balanis C.A., Antenna theory, New Jersey, John Wiley & Sons, Inc. (2005).
[9] Fang D.G., Antenna theory and microstrip antennas, CRC Press (2010).
[10] Lo Y.T., Lee S.W., Antenna Handbook, Antenna Theory, vol. 2 (1988).
[11] Taflowe A., Computational electrodynamics Finite – Difference Time Domain, Artech House, Boston (1995).
[12] Wnuk M., Analysis of radiating structures located on a multilayer dielectric, Warsaw, MUT (1999).
[13] Długosz T., Mutual influence of the TEM I transmission line of the tested object, Ph.D. dissertation, Dept. Elect. Eng., Wrocław (2007).
[14] Keshavarz S., Nozhat N., Dual-band Wilkinson power divider based on composite right/left-handed transmission lines, 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) 2016, DOI: 10.1109/ECTICon.2016.7561268.
[15] Trikas P.A., Balanis C.A., Finite – difference time – domain technique for radiation by horn antennas, IEEE Antennas and Propagation Society International Symposium Digest, vol. 3 (1991).
[16] Gizem Toroglu, Levent Sevgi, Finite-difference time-domain (FDTD) matlab codes for first- and second-order em differential equations, IEEE Antennas and Propagation Magazine, vol. 56, no. 2, pp. 221–239 (2014), DOI: 10.1109/MAP.2014.6837093

Go to article

Authors and Affiliations

Marian Wnuk
1

  1. Military University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This research presents a new technique which includes the principle of a Bezier curve and Particle Swarm Optimization (PSO) together, in order to design the planar dipole antenna for the two different targets. This technique can improve the characteristics of the antennas by modifying copper textures on the antennas with a Bezier curve. However, the time to process an algorithm will be increased due to the expansion of the solution space in optimization process. So as to solve this problem, the suitable initial parameters need to be set. Therefore this research initialized parameters with reference antenna parameters (a reference antenna operates on 2.4 GHz for IEEE 802.11 b/g/n WLAN standards) which resulted in the proposed designs, rapidly converted into the goals. The goal of the first design is to reduce the size of the antenna. As a result, the first antenna is reduced in the substrate size from areas of 5850 mm2 to 2987 mm2(48.93% approximately) and can also operates at 2.4 GHz (2.37 GHz to 2.51 GHz). The antenna with dual band application is presented in the second design. The second antenna is operated at 2.4 GHz (2.40 GHz to 2.49 GHz) and 5 GHz (5.10 GHz to 5.45 GHz) for IEEE 802.11 a/b/g/n WLAN standards.

Go to article

Authors and Affiliations

Nuttaka Homsup
Winyou Silabut
Vuttichai Kesornpatumanum
Pravit Boonek
Waroth Kuhirun
Download PDF Download RIS Download Bibtex

Abstract

MIMO technology has become very popular in a wireless communication system because of the many advantages of multiple antennas at the transmitting end and receiving end. The main advantages of MIMO systems are higher data rate and higher reliability without the need of extra power and bandwidth. The MIMO system provides higher data rate by using spatial multiplexing technique and higher reliability by using diversity technique. The MIMO systems have not only advantages, but also have disadvantages. The main disadvantage of MIMO system is that the multiple antennas required extra high cost RF modules. The extra RF modules increase the cost of wireless communication systems. In this research, the antenna selection techniques are proposed to minimize the cost of MIMO systems. Furthermore, this research also presents techniques for antenna selection to enhance the capacity of channel in MIMO systems.

Go to article

Authors and Affiliations

Dalveer Kaur
Neeraj Kumar
Download PDF Download RIS Download Bibtex

Abstract

The operating principles of RFID antennas should be considered differently than it is applied in the classical theory of radio communication systems. The procedure of measuring the radiation pattern of antennas that could be applied to RFID transponders operating in the UHF band is seldom discussed correctly in the scientific literature. The problem consists in the variability of the RFID chip impedance that strongly influences measurement results. The authors propose the proper methodology for determining the radiation pattern with respect to an individual transponder as well as an electronically tagged object. The advantage of the solution consists in the possibility of using components of different measuring systems that are available in typical antenna laboratories. The proposed procedure is particularly important in terms of parameter validation - the identification efficiency and costs of an RFID system implementation can be evaluated properly only on the basis of real values of considered parameters.

Go to article

Authors and Affiliations

Piotr Jankowski-Mihułowicz
Mariusz Węglarski
Download PDF Download RIS Download Bibtex

Abstract

The authors paid particular attention to the problem of antenna impedance measurements in the RFID technique. These measurements have to be realized by using two ports of a vector network analyzer and dedicated passive differential probes. Since the measurement process and estimated parameters depend on the frequency band, operating conditions, type of the system component and antenna designs used, appropriate verification of the impedance parameters on the basis of properly conducted experiments is a crucial stage in the antenna synthesis of transponders and read/write devices. Accordingly, a systematized procedure of impedance measurements is proposed. It can be easily implemented by designers preparing antennas for different kinds of RFID applications. The essence of indirect measurements of the differential impedance parameters is discussed in details. The experimental verification has been made on the basis of a few representative examples.

Go to article

Authors and Affiliations

Piotr Jankowski-Mihułowicz
Grzegorz Pitera
Mariusz Węglarski
Download PDF Download RIS Download Bibtex

Abstract

An intelligent security model for the big data environment is presented in this paper. The proposed security framework is data sensitive in nature and the level of security offered is defined on the basis of the data secrecy standard. The application area preferred in this work is the healthcare sector where the amount of data generated through the digitization and aggregation of medical equipment’s readings and reports is huge. The handling and processing of this great amount of data has posed a serious challenge to the researchers. The analytical outcomes of the study of this data are further used for the advancement of the medical prognostics and diagnostics. Security and privacy of this data is also a very important aspect in healthcare sector and has been incorporated in the healthcare act of many countries. However, the security level implemented conventionally is of same level to the complete data which not a smart strategy considering the varying level of sensitivity of data. It is inefficient for the data of high sensitivity and redundant for the data of low sensitivity. An intelligent data sensitive security framework is therefore proposed in this paper which provides the security level best suited for the data of given sensitivity. Fuzzy logic decision making technique is used in this work to determine the security level for a respective sensitivity level. Various patient attributes are used to take the intelligent decision about the security level through fuzzy inference system. The effectiveness and the efficacy of the proposed work is verified through the experimental study.
Go to article

Authors and Affiliations

Somya Dubey
1
Dhanraj Verma
1

  1. Dr. A. P. J. Abdul Kalam University, Indore, India
Download PDF Download RIS Download Bibtex

Abstract

Performance of standard Direction of Arrival (DOA) estimation techniques degraded under real-time signal conditions. The classical algorithms are Multiple Signal Classification (MUSIC), and Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT). There are many signal conditions hamper on its performance, such as closely spaced and coherent signals caused due to the multipath propagations of signals results in a decrease of the signal to noise ratio (SNR) of the received signal. In this paper, a novel DOA estimation technique named CW-PCA MUSIC is proposed using Principal Component Analysis (PCA) to threshold the nearby correlated wavelet coefficients of Dual-Tree Complex Wavelet transform (DTCWT) for denoising the signals before applying to MUSIC algorithm. The proposed technique improves the detection performance under closely spaced, and coherent signals with relatively low SNR conditions. Also, this method requires fewer snapshots, and less antenna array elements compared with standard MUSIC and wavelet-based DOA estimation algorithms.

Go to article

Authors and Affiliations

Dharmendra Ganage
Yerram Ravinder
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the concept of a fully planar treeshaped antenna with quasi-fractal geometry. The shape of the proposed radiator is based on a multi-resonant structure. Developed planar tree has symmetrical branches with different length and is fed by a coplanar waveguide (CPW) with modified edge of the ground plane. The antenna of size 29 mm x25 mm has been designed on Taconic - RF-35 substrate (r = 3.5, tg= 0.0018, h = 0.762 mm). The paper shows simulated and measured characteristics of return loss, as well as measured radiation patterns. The proposed antenna could be a good candidate for broadband applications (for instance: wideband imaging for medical application and weather monitoring radars in satellite communication etc.)

Go to article

Authors and Affiliations

Małgorzata Malinowska
Marek Kitliński
Download PDF Download RIS Download Bibtex

Abstract

This work examines the reduced-cost design optimization of dual- and multi-band antennas. The primary challenge is independent yet simultaneous control of the antenna responses at two or more frequency bands. In order to handle this task, a feature-based optimization approach is adopted where the design objectives are formulated on the basis of the coordinates of so-called characteristic points (or response features) of the antenna response. Due to only slightly nonlinear dependence of the feature points on antenna geometry parameters, optimization can be attained at a low computational cost. Our approach is demonstrated using two antenna structures with the optimum designs obtained in just a few dozen of EM simulations of the respective structure.

Go to article

Authors and Affiliations

Sławomir Kozieł
Adrian Bekasiewicz
Download PDF Download RIS Download Bibtex

Abstract

Compact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves se- quential optimization of the radiator in respect of selected performance figures and, eventually, the size. Optimizations are performed with iteratively increased number of design constraints. Numerical efficiency of the method is ensured using a fast local-search algorithm embedded in a trust-region framework. The proposed design framework is demonstrated using a compact planar radiator with circular polarization. The optimized antenna is characterized by a small size of 271 mm2 with 37% and 47% bandwidths in respect of 10 dB return loss and 3 dB axial ratio, respectively. The structure is benchmarked against the state-of-the-art circular polarization antennas. Numerical results are confirmed by measurements of the fabricated antenna prototype.

Go to article

Authors and Affiliations

Adrian Bekasiewicz
Slawomir Koziel
Download PDF Download RIS Download Bibtex

Abstract

The polarized electromagnetic waves have significant impact on the performance of adaptive antenna arrays. In this paper we investigate the effect of polarized desired and undesired signals on the performance of electronically steered beam adaptive antenna arrays. To achieve this goal, we built an analytical signal model for the adaptive array, in order to analyze, and compare the effect of polarized signals on the output SINRs (signal to interference plus noise ratios) of single-dipole, and cross-dipole adaptive antenna arrays. Based on a proof-of-concept experiment, and on MATLAB simulation results, it will be shown that cross-dipole adaptive antenna arrays exhibit better performance in comparison with single-dipole adaptive antenna arrays in presence of randomly polarized signals. However, single-dipole arrays show better performance under certain operating conditions.

Go to article

Authors and Affiliations

Amin H. Al Ka'bi
Download PDF Download RIS Download Bibtex

Abstract

Wireless communication is a fundamental requirement because of its low cost, high flexibility and convenience, continuing improvements in speed and connectivity, and accessibility in remote areas. One example is very small aperture terminal (VSAT) communication. A VSAT is a two-way satellite ground station operating at C-band and Ku-band frequencies, with linear and circular polarization in the C band and linear polarization in the Ku band. For the data transmitted by a satellite to be utilized by a user, the antenna on the user side must have dual-wideband and dual-polarization characteristics. In this study, a dual-polarization planar dual-wideband antenna with dimensions of 30 x 39 x 1.52 mm3 was designed using a dual-port approach. The introduction of a slot and perturbation on the patch side results in the dual-wideband characteristics of the antenna. The introduction of slots into the antenna ground results in circular polarization. The proposed antenna has resonant frequencies of 3 - 15 GHz on port 1 and 3.31 – 7.79 GHz and 9.05 – 15 GHz on port 2, with circular polarization characteristics on port 1 and linear polarization characteristics on port 2. On port 1, the gains at frequencies of 4.2 GHz is 3.93 dB, while on port 2, the gains at frequencies of 3.9 GHz is 0.51 dB.
Go to article

Authors and Affiliations

A’isya Nur Aulia Yusuf
1
Fitri Yuli Zulkifli
1

  1. Universitas Indonesia, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

In this work, a real-time label-free microwave sensing mechanism for glucose concentration monitoring using a planar biosensor configured with an inset fed microstrip patch antenna has been demonstrated. A microstrip patch antenna with the resonating frequency of 1.45 GHz has been designed and is fabricated on the Flame Retardant (FR-4) substrate. Due to the intense electromagnetic field at the edges of the patch antenna, edge length has been used as the detecting area where the sample under test (SUT) interacts with the electromagnetic field. The Poly-Dimethyl-Siloxane (PDMS) with the trench in the centre has been employed as the sample holder. Here, the SUT is the glucose dissolved in DI (de-ionized) water with the concentration range of 0.2 to 0.6 g/mL. The dielectric constant dependency on the glucose concentration has been used as the distinguishing factor which results in a shift in the S-parameter. The experimentally measured RF parameters were observed closely which showed the shift in S11 magnitude from –40 to –15 dB and resonant frequency from 1.27 to 1.3 GHz w.r.t the SUT solution of 0.2 to 0.6 g/mL with linear regression coefficient of 0.881, and 0.983 respectively.
Go to article

Authors and Affiliations

Priya Rai
1
Poonam Agarwal
2

  1. Institute of Science and Technology, Chandrakona Town, Paschim Medinipur, West Bengal-721301, India
  2. Microsystems Lab, School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi-110067, India
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a conventional mushroom-type EBG unit cell is made compact by etching a C-slot at its conducting surface. Further, the C-slotted mushroom-type EBG unit cell is coupled with a microstrip line using a novel groove-coupling technique to design a notch filter. The arrangement has achieved in the reduction of the electrical size of the mushroom type EBG unit cell by 46:15% and create a stop band suppression of -12 dB. The proposed EBG is applied to notch a narrow band centered at 5:2 GHz along with an ultra-wideband antenna. The far field gain of the antenna is suppressed by -5:8 dBi along the direction of its major lobe at 5:2 GHz. The overall size of the antenna system is 19x27x1:6mm3 which is compact. The performance of the antenna is validated from the simulation and measured results.

Go to article

Authors and Affiliations

Kumaresh Sarmah
Sivaranjan Goswami
Angana Sarma
Sunandan Baruah
Download PDF Download RIS Download Bibtex

Abstract

Most receiving antenna arrays suffer from the mutual coupling problem between antenna elements, which can critically influence the performance of the array. In this work, a novel and accurate form of compensation matrix is applied to compensate the mutual coupling in a uniform linear array (ULA). This is achieved by applying a new method based on solving a boundary value problem for the whole ULA. In this method, both self and mutual impedances are exploited in an accurate characterization of mutual impedance matrix which results in a perfect mutual coupling compensation method, and hence a very accurate direction of arrival (DOA) estimation. In the new scheme, the compensation ma- trix is obtained by using the relationship between measured voltage and theoretical coupled voltage based on the MOM. Numerical results show that using DOA estimation algorithms to the decoupled voltage obtained by using this method leads to an excellent performance of DOA estimation with higher accuracy and resolution.
Go to article

Authors and Affiliations

Naser Parhizgar
Download PDF Download RIS Download Bibtex

Abstract

Temperature change is one of key factors which should be taken into account in logistics during transportation or storage of many types of goods. In this study, a passive UHF RFID-enabled sensor system for elevated temperature (above 58°C) detection has been demonstrated. This system consists of an RFID reader and disposable temperature sensor comprising an UHF antenna, chip and temperature sensitive unit. The UHF antenna was designed and simulated in an IE3D software. The properties of the system were examined depending on the temperature level, type of package which contains the studied objects and the type of antenna substrate.

Go to article

Authors and Affiliations

Kamil Janeczek
Małgorzata Jakubowska
Grażyna Kozioł
Piotr Jankowski-Mihułowicz
Download PDF Download RIS Download Bibtex

Abstract

We designed, fabricated, and evaluated a monopole water antenna (WA) filled with pure water. A 2.4 GHz patch antenna (PA) was used for measurement comparison, and the current density distribution and 3D field strength radiation distribution and reflection coefficient of the PA had a fundamental mode and a higher-order mode at 3.5 GHz, whose polarization was 90 degrees different. The 2.4 GHz monopole WA could receive only the fundamental mode of the PA. The 3.5 GHz WA could receive the higher-order mode of the PA by rotating the WA by 90 degrees. The transmission coefficient of the 2.4 GHz WA decreased with the square of the spacing, similar to the spatial propagation characteristics of electromagnetic waves. Almost the same results could be expected if planar or three-dimensional antennas were used instead of monopole electrodes.
Go to article

Authors and Affiliations

Koyu Chinen
1
Ichiko Kinjo
2

  1. GLEX, Yokohama, Japan
  2. Information and Communication System Engineering, Dept., National Institute of Technology, Okinawa College, Nago, Japan
Download PDF Download RIS Download Bibtex

Abstract

Research on improving the performance of microstrip antennas is continuously developing the following technology; this is due to its light dimensions, cheap and easy fabrication, and performance that is not inferior to other dimension antennas. Especially in telecommunications, microstrip antennas are constantly being studied to increase bandwidth and gain according to current cellular technology. Based on the problem of antenna performance limitations, optimization research is always carried out to increase the gain to become the antenna standard required by 5G applications. This research aims to increase the gain by designing a 5-element microstrip planar array antenna arrangement at a uniform distance (lamda/2) with edge weights at a frequency of 2.6 GHz, Through the 1x5 antenna design with parasitic patch, without parasitic, and using proximity coupling.This study hypothesizes that by designing an N-element microstrip planar array antenna arrangement at uniform spacing (lamda/2) with edge weights, a multi-beam radiation pattern character will be obtained so that to increase gain, parasitic patches contribute to antenna performance. This research contributes to improving the main lobe to increase the gain performance of the 1x5 planar array antenna. Based on the simulation results of a 1x5 microstrip planar array antenna using a parasitic patch and edge weighting, a gain value of 7.34 dB is obtained; without a parasitic patch, a gain value of 7.03 dB is received, using a parasitic patch and proximity coupling, a gain value of 2.29 dB is obtained. The antenna configuration with the addition of a parasitic patch, even though it is only supplied at the end (edge weighting), is enough to contribute to the parameters impedance, return loss, VSWR, and total gain based on the resulting antenna radiation pattern. The performance of the 1x5 microstrip planar array antenna with parasitic patch and double substrate (proximity coupling), which is expected to contribute even more to the gain side and antenna performance, has yet to be achieved. The 1x5 planar array antenna design meets the 5G gain requirement of 6 dB.
Go to article

Authors and Affiliations

Imelda Uli Vistalina Simanjuntak
1
Sulistyaningsih
2
Heryanto
3
Dian Widi Astuti
1

  1. Universitas Mercu Buana, Indonesia
  2. Badan Riset dan Inovasi Nasional, Indonesia
  3. Institut Teknologi PLN, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

This Article presented the study of a single pacth antenna and array patch antenna. We will focus on the design based on a small size at a resonant frequency of 30GHz. using the software CST Microwave Studio (FEM method) and ADS software (Moments method) to find internal parameters (S... parameters, bandwidth ,VSWR) and external characteristics (gain, directivity and radiation pattern, efficiencies) . To increase the total gain of the antenna and to have a wider bandwidth band width and taking advantage of the functionality of the radiation overlap of several elements radiating in the same direction, we suggest the second and most important step to design a most important step to design an antenna array grouping patches identical to our first patch antenna proposed in first patch antenna proposed in the first step
Go to article

Authors and Affiliations

Khazini Mohammed
1
Damou Mehdi
1
Souar Zeggai
2

  1. Laboratory of Electronics, Signal Processing and Microwave, Faculty of Technology, University of Dr. TaharMoulay of Saida, Algeria
  2. Faculty of Technology, University of Dr. TaharMoulay of Saida, Algeria
Download PDF Download RIS Download Bibtex

Abstract

In this article, a hybrid circularly polarized Multiple- Input Multiple-Output (MIMO) antenna for multi-band operation from 2.3 to 9.2 GHz with an impedance bandwidth of 7 GHz is proposed and investigated experimentally. The designed MIMO antenna model has a compact size of 20mm×40mm×1.6mm on the FR-4 substrate. The microstrip feed of the proposed slot antenna consists of a tapered structure, and the radiating element consists of the inverted L- shaped slots, which were opened on both sides of the radiating elements to introduce notches at the sub-6 GHz frequencies. L-shaped stubs are also introduced on another side of the substrate in the common ground plane to attain high isolation between the radiating elements of the proposed antenna. In the operating band from 2.3 to 9.2 GHz, isolation of less than -20 dB is achieved by the proposed model. The performance of the circularly polarized MIMO antenna in terms of RHCP and LHCP radiation patterns, axial ratio, surface current distributions, isolation between the ports, diversity gain (DG), envelope correlation coefficient (ECC), total active reflection coefficient (TARC), and peak gain are studied and presented in this work. The obtained characteristics of the proposed antenna make it suitable for sub-6- GHz frequency applications.
Go to article

Bibliography

[1] Shuai Zhang, and Gert Frolund Pedersen, “Mutual Coupling Reduction for UWB MIMO Antennas with a Wideband Neutralization Line,” IEEE Antenna Wireless Propag. Letters, vol. 15, pp. 166-169, May 2016. https://doi.org/10.1109/LAWP.2015.2435992.
[2] Amjad Iqbal, Omar A. Saraereh, Arbab Waheed Ahmad, Shahid Bashir, “Mutual Coupling Reduction Using F-Shaped Stubs in UWB-MIMO Antenna,” IEEE Access, vol. 6, pp. 2755-2759, Dec 2017. https://doi.org/10.1109/ACCESS.2017.2785232.
[3] Abdulrahman Shueai, Mohsen Alqadami, Mohd Faizal Jamlos, Ping Jack Soh, Guy A. E. Vandenbosch. “Assessment of PDMS Technology in a MIMO Antenna Array,” IEEE Antennas and Wireless Propagation Letters, Volume: 15, 2016. https://doi.org/10.1109/LAWP.2015.2513960.
[4] Shraman Gupta, Zouhair Briqech, Abdel Razik Sebak, Tayeb Ahmed Denidni, “Mutual-Coupling Reduction Using Metasurface Corrugations for 28 GHz MIMO Applications,” IEEE Antennas and Wireless Propagation Letters , Volume: 16, Pages: 2763 – 2766, DOP:25 August 2017. https://doi.org/10.1109/LAWP.2017.2745050.
[5] SeaheeHwangbo, Hae Yong Yang, Yong-Kyu Yoon “Mutual Coupling Reduction Using Micromachined Complementary Meander-Line Slots for a Patch Array Antenna,” IEEE Antennas and Wireless Propagation Letter, vol. 16, pp. 1667 – 1670, 2017. https://doi.org/10.1109/LAWP.2017.2663114.
[6] Ullah, Ubaid, Ismail Ben Mabrouk, and Slawomir Koziel. “Enhanced-performance circularly polarized MIMO antenna with polarization/pattern diversity,” IEEE Access Volume:8, 2020. https://doi.org/10.1109/ACCESS.2020.2966052.
[7] Amjad Iqbal, Amor Smida, Abdullah J. Alazani, Mohamed I. Waly, Nazih Khaddaj Mallat. “Wideband Circularly Polarized MIMO Antenna for High Data Wearable Biotelemetric Devices,” IEEE Access Volume: 8, 2020. https://doi.org/10.1109/ACCESS.2020.2967397.
[8] K.G.Thomas and M.Sreenivasan, “A simple ultrawideband planar rectangular printed antenna with band dispensation,” IEEE Transaction on Antennas and Propagation, vol. 58, no. 1, pp. 27–34, January 2010. https://doi.org/10.1109/TAP.2009.2036279.
[9] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electronics Letter, vol. 39, no. 9, pp. 705–707, May 2003. https://doi.org/10.1049/el:20030495.
[10] J.-Y. Deng, L.-X. Guo, and X.-L. Liu, “An ultrawideband MIMO antenna with high isolation,” IEEE Antenna and Wireless Propagation Letters, vol. 15, pp. 182–185, 2016. https://doi.org/10.1109/LAWP.2015.2437713.
[11] B. P. Chacko, G. Augustin, and T. A. Denidni, “Uniplanar polarization diversity antenna for ultrawideband systems,” IET Microwaves, Antennas & Propagation, vol. 7, pp. 851–857, 2013. https://doi.org/10.1049/iet-map.2012.0732.
[12] P. Gao, S. He, Z. Xu, and Y. Zheng, “Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics,” IEEE Antenna and Wireless Propagation Letters, vol. 13, pp. 376–379, 2014. https://doi.org/10.1109/LAWP.2014.2305772.
[13] J. Zhu, B. Feng, B. Peng, S. Li, and L. Deng, “Compact CPW UWB diversity slot antenna with dual band-notched characteristics,” Microwave and Optical Technology Letters, vol. 58, no. 4, pp. 989–994, April 2016.
[14] H. Yoon, Y. Yoon, H. Kim, and C.-H. Lee, “Flexible ultra-wideband polarization diversity antenna with band-notch function,” IET Microwaves, Antennas & Propagation, vol. 5, pp. 1463–1470, 2011. https://doi.org/10.1049/iet-map.2010.0126.
[15] J. Iqbal, U. Illahi, M. I. Sulaiman, M. M. Alam, M. M. Su'ud, and M. N. M. Yasin, “Mutual coupling reduction using the hybrid technique in wideband circularly polarized MIMO antenna for wimax applications,” IEEE Access, vol. 7, pp. 40 951–40 958, 2019. https://doi.org/10.1109/ACCESS.2019.2908001.
[16] L. Qu, H. Piao, Y. Qu, H.-H. Kim, and H. Kim, “Circularly polarized MIMO ground radiation antennas for wearable devices,” Electronics Letters, vol. 54, no. 4, pp. 189–190, 2018. https://doi.org/10.1049/el.2017.4348.
Go to article

Authors and Affiliations

S. Salma
1
Habibulla Khan
1
B.T.P. Madhav
1
D. Ram Sandeep
1
M. Suman
1

  1. Dept. of ECE, Koneru Lakshmaiah Education Foundation, AP, India
Download PDF Download RIS Download Bibtex

Abstract

This article presents a low-profile and flexible dualband AMC Antenna operating at 2.45/ 5.8 GHz for wireless local area network (WLAN) on-body antenna applications using textile materials. A dual-band artificial magnetic conductor (AMC) structure with a dual hexagonal shape was used to reduce back radiation, therefore specific absorption rate (SAR), and improve the antenna performance parameters. To study the antenna/body interaction, a suitable comprehension and detailed studies of the wave propagation in the vicinity of the human arm in different meteorological conditions were carried out to demonstrate the effects of the skin condition on the antenna performance parameters. The simulation and measurement results indicate that electromagnetic communication on wet skin is viable. Acceptable SAR values were obtained, revealing that the body is well immune from the antenna electromagnetic radiation in functional wearable conditions. The proposed wearable AMC antenna provided engaging simulation and measurement results. It satisfies users' comfort and safety properties, making it a good candidate for WLAN/WBAN applications.
Go to article

Authors and Affiliations

Wahida Bouamra
1
Imen Sfar
1
Ameni Mersani
1
Lotfi Osman
2
Jean-Marc Ribero
3

  1. Department of Physics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
  2. Higher School of Communication of Tunis, University of Carthage, Tunis, Tunisia
  3. University Nice-Sophia Antipolis, Sophia Antipolis, France

This page uses 'cookies'. Learn more