Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Aeromonas hydrophila is a valuable indicator of the quality of water polluted by sewage and pathogens that pose a risk for humans and cold-blooded animals, including fi sh. The main aim of this research was to evaluate anthropogenic pollution of river water based on genetic diversity of 82 A. hydrophila strains by means of RAPD, semi-random AP-PCR (ISJ) and the rep-BOX conservative repeats test. Genetic diversity of A. hydrophila was HT = 0.28 (SD = 0.02) for all DNA markers (RAPD, semi random and rep-BOX). None of the analyzed electrophoretic patterns was identical, implying that there were many sources of strain transmission. The presence of genes for aerolysin (aerA), hemolysin (ahh1) and the cytotoxic enzyme complex (AHCYTOGEN) was verifi ed for all tested strains, and drug resistance patterns for tetracycline, enrofl oxacin and erythromycin were determined. The most diverse A. hydrophila strains isolated from river water were susceptible to enrofl oxacine (HS = 0.27), whereas less diverse strains were susceptible to erythromycin (HS = 0.24). The presence of the multidrug resistance marker (ISJ4-25; 1100 bp locus) in the examined strains (resistant to three analyzed drugs) indicates that intensive fi sh cultivation affects the microbiological quality of river water.
Go to article

Authors and Affiliations

A. Korzekwa
I. Gołaś
M. Harnisz
Download PDF Download RIS Download Bibtex

Abstract

This article aims to present the issues related to the legal framework for conducting economic activity in the form of marine aquaculture, consisting of farming marine organisms. The work analyses mainly selected the regulations of international law because it is these regulations that shape the rights and obligations of states, producers, farmers and society in the field of ocean farming, as well as in the context of marine resources, which are undoubtedly a common good for all mankind. The author also discusses the legal status of maritime areas in which aquaculture is cultivated.

Go to article

Authors and Affiliations

Jakub Puszkarski
Download PDF Download RIS Download Bibtex

Abstract

The aim of the experiment was to examine the effect of a diet enriched with Lactobacillus plantarum and/or β-glucan on the immune parameters in the juvenile tench (Tinca tinca). Fish were fed for 14 days different diets (phase 1 of the experiment), a dry commercial starter feed in the control group or the same feed supplemented with: 1% β-1,3/1,6-glucan in group G, 108 cfu L. plantarum g-1 in group L, 1% β-1,3/1,6-glucan + 108 cfu L. plantarum g-1 in group G+L. During consecutive 14 days all fish were fed the commercial feed alone (phase 2). The stimulating effects of the tested preparations was evaluated twice, at the end of each experimental phase. Dietary supplementation of β-1,3/1,6-glucan considerably improved the humoral innate immune response (activity of lysozyme and total Ig) and the pinocytotic activity of phagocytes. Supplement of L. plantarum improved the ability of the head kidney phagocytes (RBA) to carry out oxygen burst in L and G+L groups. A similar effect was observed for the killing activity of phagocytes (PKA) from the head kidney after the stimulation of A. hydrophila, and the effect persisted for two weeks after the commercial feed regime was resumed. A significant increase in the pro- liferative activity of B lymphocytes originating from the head kidney was observed in groups L and G+L. The study has revealed that the addition of the tested G+L synbiotic to dry diet stimulates the innate immune response mechanisms in the juvenile tench.

Go to article

Authors and Affiliations

B. Kazuń
J. Małaczewska
K. Kazuń
R. Kamiński
J. Żylińska-Urban
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the current prognoses of aquaculture development worldwide putting an emphasis on its effect on the environment and the issue of the protection of water reservoirs in different countries. Water consumption in diversified aquaculture systems is presented herein as well as the characteristics of the mechanical and biological water treatment methods in fish farms, with particular attention paid to the recirculating water systems. New aquaculture technologies using post-production waters are presented. The paper provides a discussion on the contribution of aquaculture to the global greenhouse gas emissions and the means of limiting this emission. The effect of climate change on aquatic ecosystems is presented in the context of the changes of the aquaculture production profile. The paper includes a brief presentation of the methods of mitigating the changes with respect to contamination of aquatic ecosystems as well as climate change. Reducing the water footprint can be achieved through selective breeding, species diversification and implementation of more technologically advanced aquaculture systems such as: integrated multi-trophic aquaculture, aquaponics and recirculation systems in aquaculture. The need for certification of fish farms with water recirculation systems is justified in the paper. The issues addressed herein are summarised and the main areas for extending the research promoting preservation of aquatic ecosystems in aquaculture are presented.
Go to article

Authors and Affiliations

Jacek Wróbel
1
ORCID: ORCID
Małgorzata Gałczyńska
1
ORCID: ORCID
Adam Tański
2
ORCID: ORCID
Agata Korzelecka-Orkisz
2
ORCID: ORCID
Krzysztof Formicki
2
ORCID: ORCID

  1. West Pomeranian University of Technology, Faculty of Environmental Management and Agriculture, Department of Bioengineering, Juliusza Słowackiego St, 17, 71-434 Szczecin, Poland
  2. West Pomeranian University of Technology, Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

This research analysed the availability of phytoplankton and the growth rate of Vannamei shrimp in relation to water quality changes. The research was carried out in February–March 2021 for a half cycle of shrimp cultivation in two ponds of the Brackish Water Fish Culture Probolinggo Laboratory in Probolinggo, East Java, Indonesia. The research used a descriptive method and included a survey. Sampling was made every two weeks for two months. Nine parameters were measured and ten shrimps were taken for a specific growth rate ( SGR) measurement once per sampling. Data were analysed using the principal component analysis (PCA) and canonical correspondence analysis (CCA). Secondary data of water quality were added for the PCA. The results show that the phytoplankton found in the first pond consisted of Chlorophyta, Chrysophyta, and Cyanophyta, whereas the phytoplankton in the other pond included Chlorophyta, Chrysophyta, Cyanophyta, and Dinophyta. The abundance of phytoplankton ranged from 12–80∙10 3 cell∙cm –3, which indicated eutrophic waters. The PCA demonstrated that pH, nitrate, and total organic matter (TOM) significantly influenced phytoplankton abundance in the pond. In addition, water quality parameters, such as temperature, transparency, salinity, nitrite and phosphate levels, were tolerable in both ponds for the growth of shrimps. However, the level of pH was lower than the aquaculture quality standard, whereas those of nitrate, ammonia, and TOM were higher. The growth rate of Vannamei shrimp increased by 0.76–7.34%∙day –1.
Go to article

Authors and Affiliations

Muhammad Musa
1 2 3
ORCID: ORCID
Auliarifka A. Thoyibah
4
ORCID: ORCID
Dyah A. Puspitaningtyas
4
ORCID: ORCID
Sulastri Arsad
1 2 3 5
ORCID: ORCID
Mohammad Mahmudi
1 2
ORCID: ORCID
Evellin D. Lusiana
1 2 3
Maftuch Maftuch
1
Agus S. Huda
6

  1. Universitas Brawijaya, Faculty of Fisheries and Marine Science, Jl. Veteran, Malang 65145, Indonesia
  2. Universitas Brawijaya, Faculty of Fisheries and Marine Science, Aquatic Resources and Ecological Research Group (AquaRES), Jl. Veteran, Malang 65145, Indonesia
  3. Universitas Brawijaya, Faculty of Fisheries and Marine Science, Microbiol Resources and Technology (MicroBase) Group, Post-graduate program, Jl. Veteran Malang 65145, Indonesia
  4. Universitas Brawijaya, Faculty of Fisheries and Marine Science, undergraduate students, Malang, Indonesia
  5. Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
  6. Partners or consultants for Brackish Water Fish Culture Probolinggo Laboratory East Java, Universitas Brawijaya, Faculty of Fisheries and Marine Science, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Aquaculture plays a great role in producing foodstuffs, sustaining inland capture fisheries and providing employment. The key to future development in pond aquaculture is diversification of production technology, intensity, and function connected to increasing the environmental value of pond areas. New production systems involve a combination of intensive and extensive pond culture, increasing productivity and improving nutrient utilisation and fish species diversification. The most important principle of these systems is the possibility to use the wastes from intensive aquaculture as the input for extensive, environment-friendly fish production. These systems were proven to be profitable and sustainable in tropical and subtropical areas. However, for temperate climatic conditions, such data are scarce. For this reason, we decided to discuss modifications that, in our opinion, can be applied in an extensive part of the integrated intensive-extensive system in temperate climatic conditions in order to increase the overall productivity of the pond aquaculture.
Go to article

Authors and Affiliations

Ludmiła Kolek
1
ORCID: ORCID
Ilgiz Irnazarow
1
ORCID: ORCID

  1. Polish Academy of Science, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, Kalinowa St 2, 43-520 Chybie, Poland

This page uses 'cookies'. Learn more