Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The analysis of leaching behavior of harmful substances, such as arsenic, is one of the parameters of risk assessment resulting from the storage or economic use of coal waste. The leachability depends both on the environmental conditions of the storage area as well as on the properties of the waste material itself. There are a number of leaching tests that allow to model specific conditions or measure the specific properties of the leaching process. The conducted research aimed at comparing two methods with different application assumptions. The study of arsenic leaching from waste from the hard coal enrichment process was carried out in accordance with the Polish PN-EN 12457 standard and the US TCLP procedure. The leaching results obtained with both methods did not exceed the limit values of this parameter, defined in the Polish law. Both methods were also characterized by the good repeatability of the results. The use of an acetic acid solution (TCLP method) resulted in three times higher arsenic leaching from the examined waste compared to the use of deionized water as a leaching fluid (method PN-EN 12457). Therefore, the use of organic acid tests for mining waste intended for storage with municipal waste should be considered, as the results of the basic test based on clean water leaching may be inadequate to the actual leaching of arsenic under such environmental conditions.

Go to article

Authors and Affiliations

Dorota Makowska
Katarzyna Świątek
Faustyna Wierońska
Andrzej Strugała
Download PDF Download RIS Download Bibtex

Abstract

Arsenic content was determined in the soil profiles collected from the former dumping ground of post-crystallization lye (presently under recultivation) in the area of the chemical plant in Luboń, near Poznań. Of particular concern was the content of the two most toxic species ofAs(lll) and As(V) in the environmentally available exchange fraction. Extraction was performed with a phosphate buffer of pH= 6.0 ± 0.2, and the analytical method applied was HPLC-HG-AAS. As(V) species were found in all samples, whereas As(III) species in a few samples collected at different depths. The concentration of As(V) varied from 91 to 1228 ng/g, while that of As(ll I) - from 17 to 48 ng/g. As there are no watertight rock formations underneath the dumping site, the polluting substances can he easily washed out by ground waters and carried into the Warta River, which is a main source of water for the city of Poznań.
Go to article

Authors and Affiliations

Lidia Kozak
Przemysław Niedzielski
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is an important metalloid that can cause poisoning in humans and domestic animals. Exposure to arsenic causes cell damage, increasing the production of reactive oxygen species. Chitosan is a biopolymer obtained by deacetylation of chitin with antioxidant and metal ion chelating properties. In this study, the protective effect of chitosan on arsenic-induced nephrotoxicity and oxidative damage was investigated. 32 male Wistar-albino rats were divided into 4 groups of 8 rats each as control group (C), chitosan group (CS group), arsenic group (AS group), and arsenic+chitosan group (AS+CS group). The C group was given distilled water by oral gavage, the AS group was given 100 ppm/day Na-arsenite ad libitum with drinking water, the CS group was given 200 mg/kg/day chitosan dissolved in saline by oral gavage, the AS+CS group was given 100 ppm/day Na-arsenite ad libitum with drinking water and 200 mg/kg/day chitosan dissolved in saline by oral gavage for 30 days. At the end of the 30-day experimental period, 90 mg/kg ketamine was administered intraperitoneally to all rats, and blood samples and kidney tissues were collected. Urea, uric acid, creatinine, P, Mg, K, Ca, Na, Cystatin C (CYS-C), Neutrophil Gelatinase Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM-1) levels were measured in serum samples. Malondialdehyde (MDA), Glutathione (GSH), Catalase (CAT) and Superoxide dismutase (SOD) levels in the supernatant obtained from kidney tissue were analyzed by ELISA method. Compared with AS group, uric acid and creatinine levels of the AS+CS group were significantly decreased (p<0.001), urea, KIM-1, CYS-C, NGAL, and MDA levels were numerically decreased and CAT, GSH, and SOD levels were numerically increased (p>0.05). In conclusion, based on both biochemical and histopathological-immunohistochemical- immunofluorescence findings, it can be concluded that chitosan attenuates kidney injury and protects the kidney.
Go to article

Bibliography

1. Aboulthana WM, Ibrahim NE (2018) A renoprotective role of chitosan against lithium-induced renal toxicity in rats. Bull Natl Res Cent 42: 1-11.
2. Akao Y, Yamada H, Nakagawa Y (2000) Arsenic-induced apoptosis in malignant cells in vitro. Leuk Lymphoma 37: 53-63.
3. Aleksunes LM, Augustine LM, Scheffer GL, Cherrington NJ, Manautou JE (2008) Renal xenobiotic transporters are differentially ex-pressed in mice following cisplatin treatment. Toxicology 250: 82-88.
4. Aras S, Gerin F, Aydin B, Ustunsoy S, Sener U, Turan BC, Armutcu F (2015) Effects of sodium arsenite on the some laboratory signs and therapeutic role of thymoquinone in the rats. Eur Rev Med Pharmacol Sci 19: 658-663.
5. Bagga A, Bajpai A, Menon S (2005) Approach to renal tubular disorders. Indian J Pediatr 72: 771-776.
6. Bakan M (2019) Arsenic Metabolism and Arsenolipid Biosynthesis. MedFar 2: 83-88.
7. Büget Mİ, Özkilitçi E, Küçükgergin C, Seçkin Ş, Küçükay S, Yenigün Y, Orhun G, Akıncı İÖ, Özcan PE (2014) Early Diagnosis in Acute Kidney Failure: Neutrophil Gelatinase Associated Lipocain (NGAL), Kidney Injury Molecule-1 (KIM-1), Interleukine-18 (IL-18), Cystatin C. J Turk Soc Intens Care 12: 94-100.
8. Cai X, Yu Y, Huang Y, Zhang L, Jia PM, Zhao Q, Chen Z, Tong JH, Dai W, Chen GQ (2003) Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells. Leukemia 17: 1333-1337.
9. Chou CK, Li YC, Chen SM, Shih YM, Lee JA (2015) Chitosan prevents gentamicin-induced nephrotoxicity via a carbonyl stress-dependent pathway. Biomed Res Int 2015: 675714.
10. Danışman B, Çiçek B, Yıldırım S, Yüce N, Bolat I (2023) Gastroprotective effects of bromelain on indomethacin-induced gastric ulcer in rats. GSC Biological and Pharmaceutical Sciences 23: 277-286.
11. Demir A, Seventekin N (2009) Chitin, Chitosan And General Application Areas. TTED 3: 92-103.
12. Devarajan P (2010) Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Neph-rology (Carlton) 15: 419-428.
13. Dhondup T, Qian Q (2017) Electrolyte and acid-base disorders in chronic kidney disease and end-stage kidney failure. Blood Purif 43: 179-188.
14. Dieterle F, Perentes E, Cordier A, Roth DR, Verdes P, Grenet O, Pantano S, Moulin P, Wahl D, Mahl A, End P, Staedtler F, Legay F, Carl K, Laurie D, Chibout SD, Vonderscher J, Maurer G (2010) Urinary clusterin, cystatin C, beta2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat Biotechnol 28: 463-U114.
15. Duker AA, Carranza EJ, Hale M (2005) Arsenic geochemistry and health. Environ Int 31: 631-641.
16. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4: 411–427.
17. Ewere EG, Okolie NP, Eze GI, Jegede DA (2019) Irvingia gabonensis leaves mitigate arsenic-induced renal toxicity in Wistar rats. Asian J Biomed Pharmaceut Sci 9: 17-25.
18. Flora SJ (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51: 257-281.
19. Florea AM, Yamoah EN, Dopp E (2005) Intracellular calcium disturbances induced by arsenic and its methylated derivatives in relation to genomic damage and apoptosis induction. Environ Health Perspect 113: 659-664.
20. Galanis A, Karapetsas A, Sandaltzopoulos R (2009) Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat Res 674: 31-35.
21. Ghys L, Paepe D, Smets P, Lefebvre H, Delanghe J, Daminet S (2014) Cystatin C: a new renal marker and its potential use in small ani-mal medicine. J Vet Intern Med 28: 1152-1164.
22. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133: 1-16.
23. Ibaokurgil F, Aydin H, Yildirim S, Sengul E (2023) Melatonin alleviates oxidative stress, inflammation, apoptosis, and DNA damage in acrylamide–induced nephrotoxicity in rats. Asian Pac J Trop Biomed 13: 121-130.
24. Ishaq A, Gulzar H, Hassan A, Kamran M, Riaz M, Parveen A, Chattha MS, Walayat N, Fatima S, Afzal S, Fahad S (2021) Ameliorative mechanisms of turmeric-extracted curcumin on arsenic (As)-induced biochemical alterations, oxidative damage, and impaired organ func-tions in rats. Environ Sci Pollut Res Int 28: 66313-66326.
25. Jeon TI, Hwang SG, Park NG, Jung YR, Shin SI, Choi SD, Park DK (2003) Antioxidative effect of chitosan on chronic carbon tetra-chloride induced hepatic injury in rats. Toxicology 187: 67-73.
26. Jia G, Sone H, Nishimura N, Satoh M, Tohyama C (2004) Metallothionein (I/II) suppresses genotoxicity caused by dimethylarsinic acid. Int J Oncol 25: 325-333.
27. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283: 65-87.
28. Kamran M, Malik Z, Parveen A, Huang L, Riaz M, Bashir S, Mustafa A, Abbasi GH, Xue B, Ali U (2020) Ameliorative effects of bio-char on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J Plant Growth Regul 39: 266-281.
29. Kaya Z, Eraslan G (2013) The effects of evening primrose oil on arsenic-induced oxidative stress in rats. Toxicol Environ Chem 95: 1416-1423.
30. Kitchin KT, Conolly R (2010) Arsenic-induced carcinogenesis oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 23: 327-335.
31. Liu J, Waalkes MP (2008) Liver is a target of arsenic carcinogenesis. Toxicol Sci 105: 24-32.
32. Liu YC, Huang H (1997) Involvement of calcium-dependent protein kinase C in arsenite-induced genotoxicity in chinese hamster ovary cells. J Cell Biochem 64: 423-433.
33. Mehrzadi S, Fatemi I, Malayeri AR, Khodadadi A, Mohammadi F, Mansouri E, Rashno M, Goudarzi M (2018) Ellagic acid mitigates sodium arsenite-induced renal and hepatic toxicity in male Wistar rats. Pharmacol Rep 70: 712-719.
34. Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41: 467-550.
35. Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M (2023) Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol 39: 85-110.
36. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174: 130-138.
37. Narayana KR, Reddy MS, Chaluvadi MR, Krishna DR (2001) Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J Pharmacol 33: 2-16.
38. Noman AS, Dilruba S, Mohanto NC, Rahman L, Khatun Z, Riad W, Al Mamun A, Alam S, Aktar S, Chowdhury S, Saud ZA, Rahman Z, Hossain K, Haque A (2015) Arsenic-induced histological alterations in various organs of mice. J Cytol Histol 6: 323.
39. Nomier YA, Alshahrani S, Elsabahy M, Asaad GF, Hassan A, El-Dakroury WA (2022) Ameliorative effect of chitosan nanoparticles against carbon tetrachloride-induced nephrotoxicity in Wistar rats. Pharm Biol 60: 2134-2144.
40. Nozohour Y, Jalilzadeh-Amin G (2019) Histopathological changes and antioxidant enzymes status in oxidative stress induction using Sodium arsenite in rats. J Appl Biotechnol Rep 6: 40-44.
41. Özdek U, Toz H, Kömüroğlu AU, Mis L, Huyut Z, Değer Y (2019) Protective Effect of Chitosan Against Lead-Induced Oxidative Stress in Rat Kidney. Van Vet J 30: 187-191.
42. Patel HV, Kalia K (2010) Sub-chronic arsenic exposure aggravates nephrotoxicity in experimental diabetic rats. Indian J Exp Biol 48: 762-768.
43. Peters BA, Hall MN, Liu X, Neugut YD, Pilsner JR, Levy D, Ilievski V, Slavkovich V, Islam T, Factor-Litvak P, Graziano JH, Gamble MV (2014) Creatinine, arsenic metabolism, and renal function in an arsenic-exposed population in Bangladesh. PLoS One 9: e113760.
44. Poręba R, Gać P, Poręba M, Antonowicz-Juchniewicz J, Andrzejak R (2011) Relation between occupational exposure to lead, cadmium, arsenic and concentration of cystatin C. Toxicology 283: 88-95.
45. Robles-Osorio ML, Sabath-Silva E, Sabath E (2015) Arsenic-mediated nephrotoxicity. Ren Fail 37: 542-547.
46. Roy M, Roy S (2011) Ameliorative potential of Psidium guajava in induced arsenic toxicity in Wistar rats. Vet World 4: 82-83.
47. Selby LA, Case AA, Osweiler GD, Hayes HM Jr (1977) Epidemiology and toxicology of arsenic poisoning in domestic ani-mals. Environ Health Perspect 19: 183-189.
48. Sharma S, Kaur T, Sharma AK, Singh B, Pathak D, Yadav HN, Singh AP (2022) Betaine attenuates sodium arsenite-induced renal dys-function in rats. Drug Chem Toxicol 45: 2488-2495.
49. Shen ZY, Shen WY, Chen MH, Shen J, Cai WJ, Yi Z (2002) Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells in-duced by arsenite. World J Gastroenterol 8: 40-43.
50. Shen ZY, Shen J, Cai WJ, Hong CQ, Zheng MH (2000) The alteration of mitochondria is an early event of arsenic trioxide induced apoptosis in esophageal carcinoma cells. Int J Mol Med 5: 155-158.
51. Singh MK, Yadav SS, Yadav RS, Singh US, Shukla Y, Pant KK, Khattri S (2014) Efficacy of crude extract of Emblica officinalis (amla) in arsenic-induced oxidative damage and apoptosis in splenocytes of mice. Toxicol Int 21: 8-17.
52. Sinha M, Manna P, Sil PC (2008) Arjunolic acid attenuates arsenic-induced nephrotoxicity. Pathophysiology 15: 147-156.
53. Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG Jr (2002) Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci USA 99: 6434-6439.
54. Tilako BH, Ogbodo SO, Okonkwo IN, Nubila IN, Shuneba IL, Ogbonna E, Odoma S, Gali RM, Bassey BE, Shu EN (2020) Distribu-tion and interactions of priority heavy metals with some antioxidant micronutrients in inhabitants of a lead-zinc mining community of eb-onyi state, Nigeria. Adv Toxicol Toxic Effects 4: 011-017.
55. Toz H, Değer Y (2018) The Effect of Chitosan on the Erythrocyte Antioxidant Potential of Lead Toxicity-Induced Rats. Biol Trace Elem Res 184:114-118
56. Wang Z, Yan Y, Yu X, Li W, Li B, Qin C (2016) Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice. Int J Biol Macromol 83: 442-449.
57. Wan Muhamad Salahudin WS, Norlelawati AT, Nor ZA, Aung S, Asmah HH, Zunariah B (2021) Histopathological changes in chronic low dose organic arsenic exposure in rats kidney. IIUM Med J Malays 20: 91-98.
58. Wu KY, Wu M, Fu ML, Li H, Yang Y, Zhang H, Cheng C, Wang ZZ, Wang XY, Lu XB, Liu DG, Li H, Gao R (2006) A novel chi-tosan CpG nanoparticle regulates cellular and humoral immunity of mice. Biomed Environ Sci 19: 87-95.
59. Yuan WP, Liu B, Liu CH, Wang XJ, Zhang MS, Meng XM, Xia XK (2009) Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats. World J Gastroenterol 15: 1339.
60. Zalups RK (1997) Reductions in renal mass and the nephropathy induced by mercury. Toxicol Appl Pharmacol 143: 366-379.
61. Zeng L, Qin C, Wang W, Chi W, Li W (2008) Absorption and distribution of chitosan in mice after oral administra-tion. Carbohydr Polym 71: 435-440.
62. Zhang Z, Lu B, Sheng X, Jin N (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kid-ney Dis 58: 356-365.
63. Zheng L, Kuo CC, Fadrowski J, Agnew J, Weaver VM, Navas-Acien A (2014) Arsenic and chronic kidney disease: a systematic re-view. Curr Environ Health Rep 1: 192-207.

Go to article

Authors and Affiliations

K. İrak
1
Ö.Y. Çelik
2
M. Bolacalı
3
T. Tufan
4
S. Özcan
4
S. Yıldırım
5
İ. Bolat
5

  1. Department of Biochemistry, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  2. Department of Internal Medicine, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  3. Kırsehir Ahi Evran University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Kirsehir, Turkey
  4. Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
  5. Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The present study describes a method for the determination of As (III) and As (V) in copper electrolytes. The method is based on the separation of As (III) from a copper electrolyte by triple liquid-liquid extraction using a non-polar organic solvent in a medium of 10-12 mol L–1 HCl. The extract contains As (III) and the raffinate-As (V), respectively. As(III) specie can be re-extracted from the organic solvent through the water. Analyzes of the concentration of As in the re-extract and raffinate were performed by ICP-OES spectroscopic method. The average recovery of arsenic by the proposed method is about 99%. Repeatability was estimated with RSD (n = 6). Selectivity and accuracy were proven by the standard addition method. The relative error for restoring the standard addition of As (III) is about 0.3%. The speciation method analysis could be applied for determination of the arsenic species in the analytical quality control of refined copper in copper tanks in the production of copper cathodes.
Go to article

Authors and Affiliations

E. Stefanov
1
ORCID: ORCID
S. Georgieva
1
ORCID: ORCID

  1. University of Chemical Technology and Metallurgy, Department of Analytic Chemistry, 8, St. Kliment Ohridski Blvd, 1756, Sofia, Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

In the mining galleries of the abandoned Au-As mine in Radzimowice, diverse groups of secondary arsenates crystallized recently. They form several characteristic assemblages. In the first of them the typical minerals are bukovskýite and melanterite. The second group of secondary arsenates includes scorodite, kaňkite, zýkaite, and pitticite. The third assemblage includes Co-Ni-Mg arsenates of the erythrite-annabergite-hörnesite series. The first assemblage crystallized in a zone with a very high activity of sulphate and arsenate ions and where the pH varies within a narrow range of 2.0–3.5. The second group of secondary arsenates formed in the acidic zone. The minerals identified here suggest pH variation within fairly wide ranges, from about 2.0 to 5.5. Contrary to the first and second mineral assemblage, the Co-Ni-Mg arsenates formed under different geochemical conditions. Their crystallization took place under weak acidic to neutral conditions.
Go to article

Authors and Affiliations

Rafał Siuda
1
Anna Januszewska
1

  1. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-098 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is one of the most harmful pollutants in groundwater. In this paper, the Nepali bio sand filter (BSF) was modi-fied with different bio-adsorbents, and proved to be an efficient method for arsenic removal from groundwater. Three dif-ferent bio-adsorbents were used to modify the Nepali BSF. Iron nails and biochar BSF, ~96% and ~93% arsenic removal was achieved, within the range of WHO guidelines. In iron nails, BSF and biochar BSF ~15 dm3∙h–1 arsenic content water was treated. In the other two BSFs, rice-husk and banana peel were used, the arsenic removal efficiency was ~83% of both BSFs. Furthermore, the efficiency of rice-husk and banana peel BSFs can be increased by increasing the surface area of the adsorbent or by reducing the flow rate.

Go to article

Bibliography

AGRAFIOTI E., KALDERIS D., DIAMADOPOULOS E. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management. Vol. 133 p. 309–314. DOI 10.1016/j.jenvman.2013.12.007.
AMIN M.N., KANECO S., KITAGAWA T., BEGUM A., KATSUMATA H., SUZUKI T., OHTA K. 2006. Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Industrial & Engineering Chemistry Research. Vol. 45(24) p. 8105–8110.
ARAIN G.M., ASLAM M., MAJIDANO S.A., KHUHAWAR M.Y. 2007. A preliminary study on the arsenic contamination of underground water of Matiari and Khairpur Districts, Sindh, Pakistan. Journal – Chemical Society of Pakistan. Vol. 29(5) p. 463–467.
ARUNAKUMARA K., WALPOLA B.C., YOON M.-H. 2013. Banana peel: A green solution for metal removal from contaminated waters. Korean Journal of Environmental Agriculture. Vol. 32(2) p. 108–116. DOI 10.5338/KJEA.2013.32.2.108.
ASGHAR U., PERVEEN F., ALVI S., KHAN F., SIDDQUI I., USMANI T. 2006. Contamination of arsenic in public water supply schemes of Larkana and Mirpurkhas Districts of Sind. Journal – Chemical Society of Pakistan. Vol. 28(2) p. 130–135.
BAKSHI S., BANIK C., RATHKE S.J., LAIRD D.A. 2018. Arsenic sorption on zero-valent iron-biochar complexes. Water Research. Vol. 137 p. 153–163. DOI 10.1016/j.watres.2018. 03.021.
HUANG Y., GAO M., DENG Y., KHAN Z.H., LIU X., SONG Z., QIU W. 2020. Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar. Science of the Total Environment. Vol. 715, 136957. DOI 10.1016/j.scitotenv.2020.136957.
ISLAM-UL-HAQ M., DEEDAR N., WAJID H. 2007. Groundwater arsenic contamination – A multi directional emerging threat to water scarce areas of Pakistan [online]. 6th International IAHS Groundwater Quality Conference, held in Fremantle, Western Australia, 2–7 December 2007. [Access 15.12.2019]. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.508.2478&rep=rep1&type=pdf
LATA S., SAMADDER S. 2014. Removal of heavy metals using rice husk: A review. International Journal of Environmental Research and Development. Vol. 4(2) p. 165–170.
LAWRINENKO M., LAIRD D.A. 2015. Anion exchange capacity of biochar. Green Chemistry. Vol. 17(9) p. 4628–4636. DOI 10.1039/C5GC00828J.
LEE C.-K., LOW K., LIEW S., CHOO C. 1999. Removal of arsenic(V) from aqueous solution by quaternized rice husk. Environmental Technology. Vol. 20(9) p. 971–978.
LIEN H.-L., WILKIN R.T. 2005. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere. Vol. 59(3) p. 377–386. DOI. 10.1016/j.chemosphere.2004.10.055.
MOHAN D., PITTMAN Jr C.U. 2007. Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials. Vol. 142(1–2) p. 1–53. DOI 10.1016/j.jhazmat.2007.01.006. MURTAZA G. M., ALI A. S., YAR M. 2007. A preliminary study on the arsenic contamination of underground water of Matiari and Khairpur Districts, Sindh, Pakistan. Journal of Chemical Society of Pakistan. Vol. 29 p. 463–467.
NGAI T.K., SHRESTHA R.R., DANGOL B., MAHARJAN M., MURCOTT S.E. 2007. Design for sustainable development – Household drinking water filter for arsenic and pathogen treatment in Nepal. Journal of Environmental Science and Health. Part A 42(12) p. 1879–1888.
PEHLIVAN E., TRAN T., OUÉDRAOGO W., SCHMIDT C., ZACHMANN D., BAHADIR M. 2013. Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Processing Technology. Vol. 106 p. 511–517. DOI 10.1016/j.fuproc.2012.09.021.
TABASSUM R.A., SHAHID M., NIAZI N.K., DUMAT C., ZHANG Y., IMRAN M., BAKHAT H.F., HUSSAIN I., KHALID S. 2019. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. International Journal of Phytoremediation. Vol. 21(6) p. 509–518.
WHO 2006. Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Vol. 1, Recommendations. [Access 15.12.2019]. Available at: https://apps.who.int/iris/bitstream/handle/10665/43428/9241546964_eng.pdf
ZHANG W., TAN X., GU Y., LIU S., LIU Y., HU X., LI J., ZHOU Y., LIU S., HE Y. 2020. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere. Vol. 250, 126268. DOI 10.1016/j.chemosphere.2020.126268.
ZHOU L., HUANG Y., QIU W., SUN Z., LIU Z., SONG Z. 2017. Adsorption properties of nano-MnO2 – biochar composites for copper in aqueous solution. Molecules. Vol. 22(1), 173. DOI 10.3390/molecules22010173.

Go to article

Authors and Affiliations

Ghulam S. Keerio
1
Hareef A. Keerio
2
ORCID: ORCID
Khalil A. Ibuphoto
3
Mahmood Laghari
1
Sallahuddin Panhwar
4
Mashooque A. Talpur
5

  1. Sindh Agriculture University, Department of Energy and Environment, Tandojam, Pakistan
  2. Hanyang University, Department of Civil and Environmental Engineering, Seoul, South Korea
  3. Sindh Agriculture University, Department of Farm Structures, Tandojam, Pakistan
  4. Mehran University of Engineering and Technology, US-Pakistan Centers for Advanced Studies in Water, Jamshoro, Pakistan
  5. Sindh Agriculture University, Department of Irrigation and Drainage, Tandojam, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is the only beneficial impurity for copper electrorefining through inhibiting anode passivation and the formation of floating slimes. The behaviour of copper anodes with different content of arsenic were studied at high current density (>280 A/m 2). It showed that low arsenic anodes (As < 300 ppm) easily generated anode passivation, floating slimes and cathode nodules during the electrorefining proccess. The floating slimes, electrolyte, cathode and anode were observed and analyzed. As result, low arsenic anodes were more likely to be passivated due to their microstructure defects and irregular microstructure. Increasing electrolyte temperature and addition of glycerol were propitious to reduce low arsenic anodes’ passivation. The floating slimes occured when the concentration of As(III) in electrolyte decreased to 1 g/L, and they would be precipitated by polyacrylamide. All measures greatly improved the cathode quality at current density of 300 A/m 2.
Go to article

Authors and Affiliations

Xuyong Zhang
1
ORCID: ORCID
Silei Chen
1
ORCID: ORCID
Lu Li
1
ORCID: ORCID
Peng Yang
1
ORCID: ORCID

  1. Jiangxi Copper Technology Institute Co., Ltd, Nanchang 330096, Jiangxi, PR China

This page uses 'cookies'. Learn more