Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigates Thomas’ cyclically symmetric attractor dynamics with mathematical and electronic simulations using a proportional fractional derivative to comprehend the dynamics of a given chaotic system. The three-dimensional chaotic flow was examined in detail with Riemann-Liouville derivative for different values of the fractional index to highlight the sensitivity of chaotic systems with initial conditions. Thus, the dynamics of the fractional index system were investigated with Eigenvalues, Kaplan–Yorke dimension, Lyapunov exponent, and NIST testing, and their corresponding trajectories were visualized with phase portraits, 2D density plot, and Poincaré maps. After obtaining the results, we found that the integer index dynamics are more complex than the fractional index dynamics. Furthermore, the chaotic system circuit is simulated with operational amplifiers for different fractional indices to generate analog signals of the symmetric attractor, making it an important aspect of engineering. The qualitative application of our nonlinear chaotic system is then applied to encrypt different data types such as voice, image, and video, to ensure that the developed nonlinear chaotic system can widely applied in the field of cyber security.
Go to article

Authors and Affiliations

NajeebAlam Khan
1
Muhammad Ali Qureshi
2
Saeed Akbar
1
Asmat Ara
3

  1. Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
  2. Department of Physics, University of Karachi, Karachi 75270, Pakistan
  3. College of Humanities and Sciences, PAF-KIET, Karachi 75190, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

A novel 4-D chaotic hyperjerk system with four quadratic nonlinearities is presented in this work. It is interesting that the hyperjerk system has no equilibrium. A chaotic attractor is said to be a hidden attractor when its basin of attraction has no intersection with small neighborhoods of equilibrium points of the system. Thus, our new non-equilibrium hyperjerk system possesses a hidden attractor. Chaos in the system has been observed in phase portraits and verified by positive Lyapunov exponents. Adaptive backstepping controller is designed for the global chaos control of the non-equilibrium hyperjerk system with a hidden attractor. An electronic circuit for realizing the non-equilibrium hyperjerk system is also introduced, which validates the theoretical chaotic model of the hyperjerk system with a hidden chaotic attractor.
Go to article

Authors and Affiliations

Sundarapandian Vaidyanathan
Sajad Jafar
Viet-Thanh Pham
Ahmad Taher Azar
Fawaz E. Alsaadi
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present results for a new dissipative jerk chaotic system with three quadratic terms in its dynamics.We describe the bifurcation analysis for the new jerk system and also show that the proposed system exhibits multi-stability. Next, we describe a backstepping control-based synchronization design for a pair of new jerk chaotic systems. MATLAB simulations are put forth to exhibit the various findings in this work. Furthermore, we exhibit a circuit simulation for the new jerk system using MultiSim.
Go to article

Authors and Affiliations

Sundarapandian Vaidyanathan
1
Khaled Benkouider
2
Aceng Sambas
3

  1. School of Electrical and Computing, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
  2. Non Destructive Testing Laboratory, Automatic Department, Jijel University, BP 98, 18000, Jijel, Algeria
  3. Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, West Java, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

In this work, we have developed a new 4-D dynamical system with hyperchaos and hidden attractor. First, by introducing a feedback input control into the 3-D Ma chaos system (2004), we obtain a new 4-D hyperchaos system with no equilibrium point. Thus, we derive a new hyperchaos system with hidden attractor. We carry out an extensive bifurcation analysis of the newhyperchaos model with respect to the three parameters.We also carry out probability density distribution analysis of the new hyperchaotic system. Interestingly, the new nonlinear hyperchaos system exhibits multistability with coexisting attractors.Next,we discuss global hyperchaos selfsynchronization for the newhyperchaos system via Integral Sliding Mode Control (ISMC). As an engineering application, we realize the new 4-D hyperchaos system with an electronic circuit via MultiSim. The outputs of the MultiSim hyperchaos circuit show good match with the numerical MATLAB plots of the hyperchaos model. We also analyze the power spectral density (PSD) of the hyperchaos of the state variables using MultiSim.
Go to article

Authors and Affiliations

Sundarapandian Vaidyanathan
1
Shaobo He
2
Aceng Sambas
3

  1. School of Electrical and Computing, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
  2. School of Physics and Electronics, Central South University, Changsha, 410083, China
  3. Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, West Java, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

A new 4-D dynamical system with hyperchaos is reported in this work. It is shown that the proposed nonlinear dynamical system with hyperchaos has no equilibrium point. Hence, the new dynamical system exhibits hidden hyperchaotic attractor. An in-depth dynamic analysis of the new hyperchaotic system is carried out with bifurcation transition diagrams, multistability analysis, period-doubling bubbles and offset boosting analysis. Using Integral Sliding Mode Control (ISMC), global hyperchaos synchronization results of the new hyperchaotic system are described in detail. Furthermore, an electronic circuit realization of the new hyperchaotic system has been simulated in MultiSim software version 13.0 and the results of which are in good agreement with the numerical simulations using MATLAB.

Go to article

Authors and Affiliations

Sundarapandian Vaidyanathan
Irene M. Moroz
Aceng Sambas
Download PDF Download RIS Download Bibtex

Abstract

Coexisting self-excited and hidden attractors for the same set of parameters in dissipative dynamical systems are more interesting, important, and difficult compared to other classes of hidden attractors. By utilizing of nonlinear state feedback controller on the popular Sprott- S system to construct a new, unusual 4D system with only one nontrivial equilibrium point and two control parameters. These parameters affect system behavior and transformation from hidden attractors to self-excited attractors or vice versa. As compared to traditional similar kinds of systems with hidden attractors, this system is distinguished considering it has (��-2) positive Lyapunov exponents with maximal Lyapunov exponent. In addition, the coexistence of multi-attractors and chaotic with 2-torus are found in the system through analytical results and experimental simulations which include equilibrium points, stability, phase portraits, and Lyapunov spectrum. Furthermore, the anti-synchronization realization of two identical new systems is done relying on Lyapunov stability theory and nonlinear controllers strategy. lastly, the numerical simulation confirmed the validity of the theoretical results.
Go to article

Authors and Affiliations

Saad Fawzi Al-Azzawi
1
ORCID: ORCID
Maryam A. Al-Hayali
1

  1. Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management. The main purpose of Management and Production Engineering Review is to publish the results of cutting-edge research advancing the concepts, theories and implementation of novel solutions in modern manufacturing. Papers presenting original research results related to production engineering and management education are also welcomed. We welcome original papers written in English. The Journal also publishes technical briefs, discussions of previously published papers, book reviews, and editorials. Letters to the Editor-in-Chief are highly encouraged.
Go to article

Authors and Affiliations

Saltanat BEISEMBINA
Mamyrbek BEISENBI
Nurgul KISSIKOVA
Aliya Shukirova

This page uses 'cookies'. Learn more