Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors present the approach to modelling of austenitic steel hardening basing on the Frederick-Armstrong’s rule and Chaboche elastic-plastic material model with mixed hardening. Non-linear uniaxial constitutive equations are derived from more general relations with the assumption of an appropriate evolution of back stress. The aim of the paper is to propose a robust and efficient identification method of a well known material model.

A typical LCF strain-controlled test was conducted for selected amplitudes of total strain. Continuous measurements of instant stress and total strain values were performed. Life time of a specimen, signals amplitudes and load frequency were also recorded.

Based on the measurement, identification of constitutive equation parameters was performed. The goal was to obtain a model that describes, including hardening phenomenon, a material behaviour during the experiment until the material failure. As a criterion of optimisation of the model least square projection accuracy of the material response was selected.

Several optimisation methods were examined. Finally, the differential evolution method was selected as the most efficient one. The method was compared to standard optimisation methods available in the MATLAB environment. Significant decrease of computation time was achieved as all the optimisation procedures were run parallel on a computer cluster.

Go to article

Authors and Affiliations

Łukasz Maciejewski
Wojciech Myszka
Grażyna Ziętek
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to characterize the changes in microstructure and chemical composition of the austenitic overlays on a pressure vessel steel that occur in the vicinity of the interface between the overlay and the base material. The investigations were carried out on a 16Mo3 boiler pipes weld overlaid by 309 and 310 steels. The microstructural examinations were performed on longitudinal cross-sectioned samples. The qualitative and quantitative chemical composition analyses on metallographic samples were determined on Scanning Electron Microscopy (SEM) by means of Energy Dispersive Spectrometry (EDS). The article analyzes the influence of the solidification sequence in both types of steel on final microstructure.
Go to article

Authors and Affiliations

M. Rozmus-Górnikowska
1
S. Dymek
1
M. Blicharski
1
Ł. Cieniek
1
J. Kusiński
1

  1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work, research on influence of multiwalled carbon nanotubes (MWCNTs), produced in Catalic Chemical Carbon Vapor Deposition, NANOCYLTM NC7000CNTs on a structure and properties of AISI 301 steel remelted by TIG arc. In the assessment of influence a type of carbon on properties and structure of austenitic steel, as a carbon filler was use also carburizer. In the specimens (AISI 301 plates) with dimensions 155×60×7 [mm] were drilled holes with 1.3 mm diameter and placed 0.5 mm under specimen surface. Next, to the drilled holes was implemented CNTs, carburizer and mixture of these both powders. Prepared specimens were remelted by TIG method on the CASTOTIG 2200 power source with 2.4 mm tungsten thoriated electrode with parameters sets for obtain 3.0 mm penetration depth. Remelted specimens were cut into the half of the welds distance and prepared for metallographic examinations. Cross sections of the specimens were tested on classical metallography microscopes, hardness tests, SEM analyses (on JEOL 5800 LV SEM EDX equipment) and phase identification by X-ray phase analysis on Philips APD X’Pert PW 3020 diffractometer. Hardness analysis indicates about 25% increase of hardness in the remelted area when the CTNs are used. In the specimens with carburizer there is no significant changes. SEM analyses of remelted areas on AISI 301 specimens modificated with CNTs, indicates that dark areas, initially interpret as one of the phase (based on optical microscope) is finally densely packed bladders with dimensions from 50 nm up to a few µm. These bladders are not present in the specimens with carburizer filler. High resolution scanning microscopy allow to observe in the this area protruding, longitudinal particles with 100-300 nm length. For identification of this phase, X-ray analysis was done. But very small dimensions of used CNTs (diameters about 9,5 nm), random orientation and small weight amount can make difficult or impossible to CNTs detection during XRD tests. It means that it is not possible to clearly determine nature of particles filling the cavities, it is only possible to suppose that they are CNTs beams with nanoparticles comes from their disintegration. Results of the researches indicates, that fill in the weld pool with different form of carbon (CNTs and carburizer) it is possible to achieve remelted beads with different structure and hardness distribution. It confirms validity of the research continuation with CNTs as a modifier of steels and also other metals and theirs alloys.
Go to article

Authors and Affiliations

J. Górka
1
ORCID: ORCID
T. Kik
1
ORCID: ORCID
M. Burda
2
ORCID: ORCID

  1. Silesian University of Technology, Mechanical Engineering Faculty, Department of Welding, 18a Konarskiego Str., 44-100 Gliwice, Poland
  2. Cametics Ltd, Nanotechnology, Cambridge, Cambridgeshire, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium iron alloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.
Go to article

Authors and Affiliations

A. Drotlew
B. Piekarski
M. Garbiak
Download PDF Download RIS Download Bibtex

Abstract

The automated laser welding process of 2.0 mm thick sheets of AISI 304 stainless steel was investigated. The disk laser with a beam spot diameter of 200 μm was used for bead-on-plate and next for autogenous butt joints welding. The influence of basic welding parameters such as laser power, welding speed, and focal spot position on fusion zone configuration, quality of joints, microstructure changes, and microhardness distribution across the joints were analysed and presented in this paper. The results have shown that stiffening of the 2.0 mm thick sheets is crucial for providing high quality and reproducibility of butt joint in a case of AISI 304 stainless steel due to relatively low thermal conductivity and simultaneously high thermal expansion. Relevant drop of microhardness in the weld zone was observed. The mean value of microhardness of the base metal was 230 HV0.1, while the microhardness in fusion zone of the test welds was ranged from 130 to 170 HV0.1. Additionally the microstructure changes in the weld metal and also in the heat affected zone of test joints is described.

Go to article

Authors and Affiliations

A. Lisiecki
A. Kurc-Lisiecka
Download PDF Download RIS Download Bibtex

Abstract

Industries that rely on additive manufacturing of metallic parts, especially biomedical companies, require material science-based knowledge of how process parameters and methods affect the properties of manufactured elements, but such phenomena are incompletely understood. In this study, we investigated the influence of selective laser melting (SLM) process parameters and additional heat treatment on mechanical properties. The research included structural analysis of residual stress, microstructure, and scleronomic hardness in low-depth measurements. Tensile tests with specimen deformation analysis using digital image correlation (DIC) were performed as well. Experiment results showed it was possible to observe the porosity growth mechanism and its influence on the material strength. Specimens manufactured with 20% lower energy density had almost half the elongation, which was directly connected with the porosity growth during energy density reduction. Hot isostatic pressing (HIP) treatment allowed for a significant reduction of porosity and helped achieve properties similar to specimens manufactured using different levels of energy density.

Go to article

Authors and Affiliations

J. Kluczyński
L. Śnieżek
ORCID: ORCID
K. Grzelak
ORCID: ORCID
A. Oziębło
K. Perkowski
J. Torzewski
I. Szachogłuchowicz
K. Gocman
M. Wachowski
ORCID: ORCID
B. Kania

This page uses 'cookies'. Learn more