Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In detecting cluster targets in ports or near-shore waters, the echo amplitude is seriously disturbed by interface reverberation, which leads to the distortion of the traditional target intensity characteristics, and the appearance of multiple targets in the same or adjacent beam leads to fuzzy feature recognition. Studying and extracting spatial distribution scale and motion features that reflect the information on cluster targets physics can improve the representation accuracy of cluster target characteristics. Based on the highlight model of target acoustic scattering, the target azimuth tendency is accurately estimated by the splitting beam method to fit the spatial geometric scale formed by multiple highlights. The instantaneous frequencies of highlights are extracted from the time-frequency domain, the Doppler shift of the highlights is calculated, and the motion state of the highlights is estimated. Based on the above processing method, target highlights’ orientation, spatial scale and motion characteristics are fused, and the multiple moving highlights of typical formation distribution in the same beam are accurately identified. The features are applied to processing acoustic scattering data of multiple moving unmanned underwater vehicles (UUVs) on a lake. The results show that multiple small moving underwater targets can be effectively recognized according to the highlight scattering characteristics.
Go to article

Authors and Affiliations

Yang Yang
1
ORCID: ORCID
Jun Fan
1
Bin Wang
1
ORCID: ORCID

  1. Key Laboratory of Marine Intelligent Equipment and System of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
Download PDF Download RIS Download Bibtex

Abstract

The paper demonstrates that blind people localize sounds more accurately than sighted people by using monaural and/or binaural cues. In the experiment, blind people participated in two tests; the first one took place in the laboratory and the second one in the real environment under different noise conditions. A simple click sound was employed and processed with non-individual head related transfer functions. The sounds were delivered by a system with a maximum azimuth of 32° to the left side and 32° to the right side of the participant’s head at a distance ranging from 0.3 m up to 5 m. The present paper describes the experimental methods and results of virtual sound localization by blind people through the use of a simple electronic travel aid based on an infrared laser pulse and the time of flight distance measurement principle. The lack of vision is often compensated by other perceptual abilities, such as the tactile or hearing ability. The results show that blind people easily perceive and localize binaural sounds and assimilate them with sounds from the environment.
Go to article

Authors and Affiliations

Larisa Dunai
Ismael Lengua
Guillermo Peris-Fajarnés
Fernando Brusola
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on the radio direction finding (DF) in multipath environments. Based on the measurement results presented in the open literature, the authors analyse the influence of environment transmission properties on the spread of the signal reception angle. Parameters that define these properties are rms delay and angle spreads. For these parameters, the mutual relationship is determined. This relationship is the basis for assessment of the required number of bearings that minimize the influence of the environment on the accuracy of DF procedure. In the presented analysis, the statistical properties of the signal reception angle are approximated by the normal distribution. The number of bearings versus the rms delay spread is presented as the main objective of this paper. In addition, a methodology of the bearings’ spatial averaging that provides better estimation of the reception angle is shown.
Go to article

Authors and Affiliations

Cezary Ziółkowski
Jan Marcin Kelner

This page uses 'cookies'. Learn more