Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article concerns investigations over benefits of application of HRC devices into sulphide copper ore processing plant. High pressure comminution appears to be very effective technology in hard ore processing circuits, especially in terms of energy consumption. This can be particularly observed in downstream grinding and beneficiation operations. A series of pilot-scale crushing tests in HRC roller press for various levels of operating pressure, were performed. HRC crushing effectiveness along with downstream grinding process course for each crushing product were also under analysis. The investigations were supplemented by analysis of flotation process effectiveness and impact of the process of high-pressure comminution on environment (dust emission). The results of investigation show that operating pressure level influences the obtained comminution results (comminution degree, yield of finest particle size fractions). The grinding effectiveness, measured through production of the finest particle size fractions was significantly influenced by the operating pressure. The results show that higher values of operating pressure (4.0 and 4.5 N/mm2) are not as efficient within this scope as the pressure 3.5 N/mm2. Dust emission is also correlated with the operating pressure value.
Go to article

Authors and Affiliations

Daniel Saramak
Tomasz Gawenda
Agnieszka Saramak
Dariusz Foszcz
Zdzisław Naziemiec
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies on quartzite milling in a ball mill. The milling was conducted in a batch system, for diversified compositions of balls. The milling product was subjected to granulometrical, morphological and strength analyses. On the basis of the developed Reid's theory and using the Austin-Gardner equation, a form of the function circumscribing the specific rate of comminution of selected size fractions was determined. The values of the breakage rate function bi, j for the mill's apparatus conditions were determined. The impact was investigated for a variable number of grinding media contact points on the values of specific rate S and the values of the breakage rate function bi, j. Furthermore, the values of coefficients occurring in the equations circumscribing the specific rate of milling S and breakage parameter bi, j were determined.

Go to article

Authors and Affiliations

Tomasz Olejnik
Download PDF Download RIS Download Bibtex

Abstract

Flowability of fine, highly cohesive calcium carbonate powder was improved using high energy mixing (dry coating) method consisting in coating of CaCO3 particles with a small amount of Aerosil nanoparticles in a planetary ball mill. As measures of flowability the angle of repose and compressibility index were used. As process variables the mixing speed, mixing time, and the amount of Aerosil and amount of isopropanol were chosen. To obtain optimal values of the process variables, a Response Surface Methodology (RSM) based on Central Composite Rotatable Design (CCRD) was applied. To match the RSM requirements it was necessary to perform a total of 31 experimental tests needed to complete mathematical model equations. The equations that are second-order response functions representing the angle of repose and compressibility index were expressed as functions of all the process variables. Predicted values of the responses were found to be in a good agreement with experimental values. The models were presented as 3-D response surface plots from which the optimal values of the process variables could be correctly assigned. The proposed, mechanochemical method of powder treatment coupled with response surface methodology is a new, effective approach to flowability of cohesive powder improvement and powder processing optimisation.

Go to article

Authors and Affiliations

Karolina Leś
Karol Kowalski
Ireneusz Opaliński
Download PDF Download RIS Download Bibtex

Abstract

The author presents a development of computational model of design of ball screws thread. This model is the basis for computer program, which calculates the geometrical features of the thread for precisely given backlashes and contact angles. The program makes it possible to create a data base of a new generation ball screw of quality competitive to foreign ball screws. The modeling allows one to better select the ball screw and to predict its quality in the early stage of design.
Go to article

Authors and Affiliations

Jerzy Z. Sobolewski
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we have studied the evolution of morphology and brazing behavior of Ag-28Cu alloy filler processed by high energy ball milling. The milling of the powder mixture was carried out for 40 h. The structural and morphological analyses were performed by the X-ray diffraction and scanning electron microscopy. The melting temperature of the braze filler was determined by differential thermal analysis. The filler wetting properties were assessed from the spread area ratio measurements on various Ti substrates. The results indicate that the ball milling can effectively depress the filler melting point and enhance the brazeability. The milled powder mixture showed Ag(Cu) solid solution with a crystallite size of 174-68 nm after 40 h. It was shown that the high energy ball milling can be a potential method to develop low temperature brazing fillers for advanced microjoining applications.

Go to article

Authors and Affiliations

Ashutosh Sharma
ORCID: ORCID
Myoung Jin Chae
Byungmin Ahn
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, we have developed Sn-Ag alloy by a simple high energy ball milling technique. We have ball-milled the eutectic mixture of Sn and Ag powders for a period of 45 h. The milled powder for 45 h was characterized for particle size and morphology. Microstructural investigations were carried out by scanning electron microscopy and X-ray diffraction studies. The melting behavior of 45 h milled powder was studied by differential scanning calorimetry. The resultant crystallite size of the Sn(Ag) solid solution was found to be 85 nm. The melting point of the powder was 213.6oC after 45 h of milling showing depression of ≈6oC in melting point as compared to the existing Sn-3.5Ag alloys. It was also reported that the wettability of the Sn-3.5Ag powder was significantly improved with an increase in milling time up to 45 h due to the nanocrystalline structure of the milled powder.

Go to article

Authors and Affiliations

Ashutosh Sharma
ORCID: ORCID
Byungmin Ahn
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses a way of choosing the design features (geometry, the rate of grinding and thrust) of ring-ball mills. Various methods of calculating the optimal rate of grinding have been compared. Basing on experimental investigations on the pilot-plant and industrial scale, the influence of the angular velocity and the thrust on the mill have been verified, and the interdependence between the rate of grinding and the thrust of the grinding elements have been explained.
Go to article

Authors and Affiliations

Kazimierz Mroczek
Tadeusz Chmielniak
Download PDF Download RIS Download Bibtex

Abstract

The empirical-analytic model of milling in a ring-ball mill has been presented. It concerns the interaction of the basic design features of the grinding unit (geometry, rate of grinding and thrust of the balls) on the maximum efficiency of the mill. The production of pulverized coal was expressed by the product of the flux of material drawn in by the balls and the so-called "grinding effect of the balls" (defined by the increase of the mass fraction of dust in its flux). The kinematic quantities (among others, the flux of loose material drawn in by the balls) have been calculated on the basis of a simple analytical description of the flow of particles and some parametrical assumptions. The grinding properties of coal have been determined making use of laboratory tests of its cruising by the rollers. Some verifications of the grinding model on the experimental test stand with a ring-ball mill have been presented. The test stand is installed at the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology.
Go to article

Authors and Affiliations

Kazimierz Mroczek
Tadeusz Chmielniak
Download PDF Download RIS Download Bibtex

Abstract

Increasing interest, enthusiasm of sport lovers, and economics involved offer high importance to sports video recording and analysis. Being crucial for decision making, ball detection and tracking in soccer has become a challenging research area. This paper presents a novel deep learning approach for 2D ball detection and tracking (DLBT) in soccer videos posing various challenges. A new 2-stage buffer median filtering background modelling is used for moving objects blob detection. A deep learning approach for classification of an image patch into three classes, i.e. ball, player, and background is initially proposed. Probabilistic bounding box overlapping technique is proposed further for robust ball track validation. Novel full and boundary grid concepts resume tracking in ball_track_lost and ball_out_of_frame situations. DLBT does not require human intervention to identify ball from the initial frames unlike the most published algorithms. DLBT yields extraordinary accurate and robust tracking results compared to the other contemporary 2D trackers even in presence of various challenges including very small ball size and fast movements.

Go to article

Authors and Affiliations

P.R. Kamble
A.G. Keskar
K.M. Bhurchandi
Download PDF Download RIS Download Bibtex

Abstract

The effects of different types of balls on spark plasma sintering (SPS) characteristics of high energy ball milled Ti-48wt% Al-4wt% Nd powders were investigated. After ball milling with STS balls and zirconia balls at 800 rpm for 3 h in argon atmosphere, both powders showed shape factors of about 0.8, but their average powder sizes differed respectively at approximately 11 µm and 5 µm. From XRD results, only the peaks of pure Ti, Al and Nd were detected in both powders. The obtained Ti-Al-Nd powders were consolidated by SPS technique at 1373 K for 15 min under a pressure of 50 MPa in vacuum, resulting in high density over 99%. EDS and XRD analyses indicated the formation of binary phases such as TiAl3, TiAl, Ti3Al5, and NdAl3 after SPS in both cases of STS and zirconia balls, while the ternary Ti-Al-Nd phase was detected only in the case of zirconia balls. The size of second phases was slightly smaller in the case of zirconia balls. The microhardness of the sample was 790 Hv with zirconia balls and 540 Hv with STS balls.
Go to article

Authors and Affiliations

Hyunseung Lee
1
ORCID: ORCID
Hoseong Rhee
1
ORCID: ORCID
Sangsoo Lee
2
ORCID: ORCID
Si Young Chang
1
ORCID: ORCID

  1. Korea Aerospace University, Department of Materials Science and Engineering, Goyang, Korea
  2. Korea Aerospace University, Advanced Materials Research Institute, Goyang, Korea
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of metallographic and tribological tests on GX120MnCr13 cast steel that was previously subjected to heat treatment (including solution treatment from 1100°C and isothermal holding at 250, 400, and 600°C for 100 hours). The temperatures of the isothermal holding process were selected in order to reflect the possible working conditions of the cast elements that can be made of this cast steel. Wear tests were carried out under dry friction conditions using the ball-on-disc method using a ZrO2 ball as a counter-sample. The tests were carried out with a load of 5 N. The influence of the long-term isothermal holding process on the microstructure of the tested cast steel was analysed by light and scanning microscopy; however, abrasion marks were also examined using a confocal microscope. Based on the tests conducted, it was found that in the microstructures of the sample after solution treatment and samples that were held in isothermal condition at 250 and 400°C, the grain boundary areas were enriched in Mn and Cr compared to the areas inside the grains. Pearlite appeared in the sample that was heated (or held in isothermal holding) at 600°C; its share reached 41.6%. The presence of pearlite in the austenitic matrix increased the hardness to 351.4 HV 10. The hardness of the remaining tested samples was within a range of 221.8–229.1 HV 10. Increasing the hardness of the tested cast steel directly resulted in a reduction in the degree of wear as well as the volume, area, and width of the abrasion marks. A microscopic analysis of the wear marks showed that the dominant process of the abrasive wear of the tested friction pair was the detachment and displacement of the tested material through the indentation as a result of the cyclical impact of the counter-sample.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings – application. Kraków: FotoBit. (in Polish).
[2] Maratray, F. (1995). High carbon manganese austenitic steels. Paris: International Manganese Institute.
[3] Krawczyk, J., Matusiewicz, P., Frocisz, Ł., Augustyn-Nadzieja, J., Parzycha, S. (2018). The wear mechanism of mill beaters for coal grinding made-up from high manganese cast. In the 73 WFC, 23-27 September 2018. Kraków, Poland.
[4] Zambrano, O.A., Tressia, G. & Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 1-24. DOI: 10.1016/j.engfailanal.2020.104621.
[5] Wróbel, T., Bartocha, D., Jezierski, J.; Kalandyk, B., Sobula, S., Tęcza, G., Kostrzewa, K., Feliks, E. (2023). High-manganese alloy cast steel in applications for cast elements of railway infrastructure. In the Proceedings of XXIX International Scientific Conference of Polish, Czech and Slovak Foundrymen Współpraca / Spolupráca, 26-28 April 2023. Niepołomice, Poland.
[6] Machado, P.C., Pereira, J.I. & Sinatora, A. (2021). Subsurface microstructural dynamic recrystallization in multiscale abrasive wear. Wear. 486-487, 204111, 1-14. DOI: 10.1016/j.wear.2021.204111.
[7] Tressia, G., Penagos, J.J. & Sinatora, A. (2017). Effect of abrasive particle size on slurry abrasion resistance of austenitic and martensitic steels. Wear. 376-377, 63-69. DOI: 10.1016/j.wear.2017.01.073.
[8] Olawale, J.O., Ibitoye, S.A., Shittu, M.D. & Popoola, A.P.I. (2011). A study of premature failure of crusher jaws. Journal of Failure Analysis and Prevention. 11(6), 705-709. DOI: 10.1007/s11668-011-9511-7.
[9] Stradomski Z., Stachura S., Stradomski G. (2013). Fracture mechanisms in steel castings. Archives of Foundry Engineering. 13, 88-91. DOI: 10.2478/afe-2013-0066.
[10] Martin, M., Raposo, M., Prat, O., Giordana, M.F. & Malarria, J. (2017). Pearlite development in commercial Hadfield steel by means of isothermal reactions. Metallography, Microstructure, and Analysis. 6, 591-597.
[11] Martin, M., Raposo, M., Druker, A., Sobrero, C. & Malarria, J. (2016). Influence of pearlite formation on the ductility response of commercial Hadfield steel. Metallography, Microstructure, and Analysis. 5(6), 505-511. https://doi.org/10.1007/s13632-016-0316-7.
[12] Tęcza, G. & Sobula, S. (2014). Effect of heat treatment on change microstructure of cast high-manganese Hadfield steel with elevated chromium content. Archives of Foundry Engineering. 14, 67-70.
[13] Krawczyk, J., Bembenek, M. & Pawlik, J. (2021). The role of chemical composition of high-manganese cast steels on wear of excavating chain in railway shoulder bed ballast cleaning machine. Materials. 16, 1-16. DOI: 10.3390/ma14247794.
[14] Fedorko, G., Molnár, V., Pribulová, A., Futaš, P., Baricová, D. (2011). The influence of Ni and Cr-content on mechanical properties of Hadfield ́s steel. In the 20th Anniversary International Conference on Metallurgy and Materials – Metal, May 2011 (pp. 18-20). Brno, Czech Republic.
[15] Najafabadi, V., Amini, K. & Alamdarlo, M. (2014). Investigating the effect of titanium addition on the wear resistance of Hadfield steel. Metallurgical Research and Technology. 111(6), 375-382. DOI: 10.1051/metal/2014044.
[16] Tęcza, G. & Garbacz-Klempka, A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. DOI: 10.1515/afe-2016-0103.
[17] Kalandyk, B., Tęcza, G., Zapała, R. & Sobula S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in Miller test. Archives of Foundry Engineering. 15, 35-38. DOI: 10.1515/afe-2015-0033.
[18] Shan, Q., Ge, R., Li Z., Zhou, Z., Jiang ,Y., Lee, Y.-S. & Wu, H. (2021). Wear properties of high-manganese steel strengthened with nano-sized V2C precipitates. Wear. 482-483, 203922, 1-10. DOI: 10.1016/j.wear.2021.203922.
[19] Ayadi, S. & Hadji, A. (2021). Effect of chemical composition and heat treatments on the microstructure and wear behavior of manganese steel. International Journal of Metalcasting. 15(2), 510-519. DOI: 10.1007/s40962-020-00479-2.
[20] Gürol, U. & Can Kurnaz, S. (2020). Effect of carbon and manganese content on the microstructure and mechanical properties of high manganese austenitic steel. Journal of Mining and Metallurgy Section B - Metallurgy. 56, 171-182. DOI: 10.2298/JMMB191111009G.
[21] Kalandyk, B., Zapała, R., Kasińska, J. & Madej, M. (2021) Evaluation of microstructure and tribological properties of GX120Mn13 and GX120MnCr18-2 cast steels. Archives of Foundry Engineering. 21(3), 67-76. DOI: 10.24425/afe.2021.138681.
[22] Atabaki, M.M., Lafaril, S. & Abdollah-Pour, H. (2012) Abrasive wear behavior of high chromium cast iron and Hadfield steel-A comparison. Journal of Iron and Steel Research, International. 19, 43-50. DOI: 10.1016/S1006-706X(12)60086-7.
[23] Gierek, A. (2005). Zużycie tribologiczne. Gliwice: Wyd. Politechniki Śląskiej.
[24] Kalandyk, B., Zapała, R., Madej, M., Kasińska, J. & Piotrowska, K. (2022). Influence of pre-hardened GX120Mn13 cast steel on the tribological properties under technically dry friction. Tribologia. 3, 17-24. DOI: 10.5604/01.3001.0016.1020.
[25] El-Fawkhry, M.K., Fathy, A.M., Eissa, M.M. & El-Faramway, H. (2014). Eliminating heat treatment of Hadfield steel in stress abrasion wear applications, International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569.
[26] Cybo, J., Jura, S. (1995). Functional description of isometric structures in quantitative metallography. Functional description of isometric structures in quantitative metallography. Gliwice: Wyd. Politechniki Śląskiej. (in Polish).
[27] Standard EN 10349: 2009. Cast steel castings - Castings made of manganese austenitic cast steel. (in Polish).
[28] Standards PN-EN ISO 6507-1: 2007. Metallic materials - Vickers hardness test.
[29] Standards ISO 20808: 2016. Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of friction and wear characteristics of monolithic ceramics by ball-on-disc method. [30] Mishra, S. & Dalai R. (2021). A comparative study on the different heat-treatment techniques applied to high manganese steel. Materials Today: Proceedings. 44(1), 2517-2520. DOI: 10.1016/j.matpr.2020.12.602.
[31] Kawalec, M. & Fraś, E. (2009). Effect of silicon on the structure and mechanical properties of high-vanadium cast iron. Archives of Foundry Engineering. 9(3), 231-234.
[32] Dziubek, M., Rutkowska-Gorczyca, M., Dudziński, W. & Grygier, D. (2022). Investigation into changes of microstructure and abrasive wear resistance occurring in high manganese steel X120Mn12 during isothermal annealing and re-austenitisation process. Materials. 15(7), 2622. DOI: 10.3390/ma15072622.
[33] El Fawkhry M. K. (2021). Modified Hadfield steel for castings of high and low gouging applications. International Journal of Metalcasting. 15(4), 613-624. DOI: 10.1007/s40962-020-00492-5.
[34] Lindroos, M., Apostol, M., Heino, V., Valtonen, K., Laukkanen, A., Holmberg, K. & Kuokkala, V.T. (2015). The deformation, strain hardening, and wear behavior of chromium-alloyed Hadfield steel in abrasive and impact conditions. Tribology Letters. 57, 1-11. DOI: 10.1007/s11249-015-0477-6.
[35] Luo, Q. & Zhu, J. (2022). Wear property and wear mechanisms of high-manganese austenitic Hadfield steel in dry reciprocal sliding. Lubricants. 10(3), 1-18. DOI: /10.3390/lubricants10030037.
Go to article

Authors and Affiliations

Barbara Kalandyk
1
ORCID: ORCID
Renata E. Zapała
1
ORCID: ORCID
Iwona Sulima
2
ORCID: ORCID
Piotr Furmańczyk
3
ORCID: ORCID
Justyna Kasińska
3
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of the National Education Commission Krakow, Institute of Technology, ul. Podchorążych 2, 32-084 Krakow, Poland
  3. Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

Based on the rolling bearing vibration measurement principle in ISO standard, a nonlinear dynamic model of ball bearing is built and motion equations of the inner ring, outer ring, and rolling elements are derived by using Lagrange’s equation. The ball bearing model includes the influence of waviness, rotational speed, external load, arbor supporting stiffness and arbor eccentricity. Ball bearing high-speed vibration tests are performed and used to verify the theoretical results. Simulated results showed that specific waviness orders produced the principal frequencies that were proportional to rotational speed. Rotational speed mainly affected the value of the natural frequency of the bearing system, and RMS (Root Mean Square) of the full band had a great fluctuation with the increase of rotational speed. In the experiment, spectrum and RMS of 2fs-30 kHz (fs: the rotational frequency of inner ring/arbor) under high speed could include not only the influence of rotational speed but also principal frequencies produced by waviness, which could cover the part of requirements of the standard bearing vibration measurement.

Go to article

Authors and Affiliations

P.P Hou
L.Q. Wang
Q.Y. Peng
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analytical solution of levitation problem for conductive, dielectric and magnetically anisotropic ball. The levitation exerts either an AC or impulse magnetic field. Both the Lorentz and material electromagnetic forces (of magnetic matter) could lift the ball in a gravitational field. The electromagnetic field distribution is derived by means of variables separation method. The total force is evaluated by Maxwell stress tensor (generalized), co-energy and Lorentz methods. Additionally, power losses are calculated by means of Joule density and the Poynting vector surface integrals. High frequency asymptotic formulas for the Lorentz force and power losses are presented. All analytical solutions derived could be useful for rapid analysis and design of levitations systems. Finally, some remarks about considered levitations are formulated.
Go to article

Bibliography

  1.  K.J. Binns, P.J. Lawrenson, and C.W. Trowbridge, The analytical and numerical solution of electric and magnetic fields, John Wiley & Sons, 1992.
  2.  B.S. Guru and H.R. Hiziroglu, Electromagnetic field theory fundamentals, University Press, Cambridge, 2004.
  3.  V. Dolga and L. Dolga, “Modeling and simulation of a magnetic levitation system”, Annals of the Oradea University of Timisoara, Romania, VI (XVI) (2007).
  4.  H. Górecki and M. Zaczyk, “Determination of optimal controllers. Comparison of two methods for electric network chain”, Bull. Pol. Ac.: Tech.66 (3), 267–273 (2018).
  5.  E. Fromm and H. Jehn, “Electromagnetic forces and power absorption in levitation melting”, British Journal of Applied Physics, 16, 653–663 (1965).
  6.  M. Zdanowski and R. Barlik, “Analytical and experimental determination of the parasitic parameters in high-frequency inductor”, Bull. Pol. Ac.: Tech.65 (1), 107–112 (2017).
  7.  E.C. Okress, D.M. Wroughton, G. Comenetz, P.H. Brace, J.C.R. Kelly, “Electromagnetic levitation of solid and molten metals”, J. Appl. Phys. 23 (5), 545–552 (1952).
  8.  D. Spałek, “Theorem about electromagnetic force surface representation in anisotropic region”, J. Tech. Phys.XLVIII (3-4), 135–145 (2007).
  9.  W.R. Smythe, Static and dynamic electricity, McGraw–Hill Book Company, New York, 1950.
  10.  D. Spałek, “Electromagnetic torque components in synchronous salient-pole machine”, COMPEL. Int. J. Comput. . Math. Electr. Electron. Eng. 16 (3), 129–143 (1997).
  11.  D. Spałek, “Two theorems about surface-integral representation of electromagnetic force and torque”, IEEE Trans. Magn. 53 (7), 1–10 (2017).
  12.  W. He, J. Zhang, S. Yuan, A. Yang, and Ch. Qu, “Threedimensional magneto-electric vibration energy harvester based on magnetic levitation”, IEEE Magn. Lett. 8, 6104703 (2017).
  13.  L. Ułanowicz and G. Jastrze˛bski, “The analysis of working liquid flow in a hydrostatic line with the use of frequency characteristics”, Bull. Pol. Ac.: Tech. 68 (4), 949–956, (2020).
  14.  T. Kaczorek, “Stability analysis of positive linear systems by decomposition of the state matrices into symmetrical and antisymmetrical parts”, Bull. Pol. Ac.: Tech. 67 (4), 761–768 (2019).
  15.  B.P. Mann and N.D. Sims, “Energy Harvesting from the Nonlinear Oscillations of Magnetic Levitation”, Universities of Leeds, Sheffield and York (promoting access to White Rose research papers http://eprints.whiterose.ac.uk/), 2017.
  16.  D. Spałek, “Analytical electromagnetic field and forces calculation for linear, cylindrical and spherical electromechanical converters”, Bull. Pol. Ac.: Tech. 52 (3), 239–250 (2004).
  17.  D. Spałek, “Levitation of Conductive and Magnetically Anisotropic Ball”, IEEE Trans. Magn. 55 (3), 1000406 (2019).
  18.  D. Spałek, “Generalization of Maxwell Stress Tensor Method for Magnetically Anisotropic Regions”, IEEE Trans. Magn. 55 (12), 1000406 (2019).
  19.  J.R. Wait, “A conductive sphere in a time varying magnetic field”, Geophysics, 16 (4), 666–672 (1951).
  20.  K. Jayasekera and I. Ciric, “Benchmark Computations of the Fields, Losses, and Forces for Conducting Spheroids in the Proximity of Current- Carrying Turns”, IEEE Trans Magn. 42 (7), 1802–1811 (2006).
  21.  I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, 2015.
  22.  D. Spałek, “Fourth boundary condition for electromagnetic field problems”, J. Tech. Phys. XLI (2), 129–144 (2000).
  23.  D. Spałek, “Anisotropy component of electromagnetic force and torque”, Bull. Pol. Ac.: Tech. 58 (1), 107–117 (2010).
Go to article

Authors and Affiliations

Dariusz Spałek
1
ORCID: ORCID

  1. Silesian University of Technology, Electrical Engineering Faculty, ul. Akademicka 10, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thermal error always exists in a machine tool and accounts for a large part of the total error in the machine. Thermal displacement in X-axis on a CNC lathe is controlled based on a rapid heating system. Positive Temperature Coefficient (PTC) heating plates are installed on the X-axis of the machine. A control temperature system is constructed for rapid heating which further helps the thermal displacement to quickly reach stability. The system then continuously maintains stable compensation of the thermal error. The presented rapid heating technique is simpler than the compensation of machine thermal errors by interference in the numerical control system. Results show that the steady state of the thermal displacement in the X-axis can be acquired in a shorter time. In addition, almost all thermal errors in constant and varying working conditions could be significantly reduced, by above 80% and 60%, respectively, compared to those without using the rapid heating. Therefore, the proposed method has a high potential for application on the CNC lathe machine for improving its precision.
Go to article

Bibliography

[1] J. Bryan. International status of thermal error research. CIRP Annals, 39(2):645–656, 1990. doi: 10.1016/S0007-8506(07)63001-7.
[2] J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, et al. Thermal issues in machine tools. CIRP Annals, 61(2):771–791, 2012. doi: 10.1016/j.cirp.2012.05.008.
[3] H. Wang, F. Li, Y. Cai, Y. Liu, and Y. Yang. Experimental and theoretical analysis of ball screw under thermal effect. Tribology International, 152:106503, 2020. doi: 10.1016/j.triboint.2020.106503.
[4] C. Jin, B. Wu, and Y. Hu. Heat generation modeling of ball bearing based on internal load distribution. Tribology International, 45(1):8–15, 2012. doi: 10.1016/j.triboint.2011.08.019.
[5] J. Liu, C. Ma, S. Wang, S. Wang, B. Yang, and H. Shi. Thermal boundary condition optimization of ball screw feed drive system based on response surface analysis. Mechanical Systems and Signal Processing, 121:471–495, 2019. doi: 10.1016/j.ymssp.2018.11.042.
[6] C.-H. Wu and Y.-T. Kung. Thermal analysis for the feed drive system of a CNC machine center. International Journal of Machine Tools and Manufacture, 43(15):1521–1528, 2003. doi: 10.1016/j.ijmachtools.2003.08.008.
[7] H. Shi, C. Ma, J. Yang, L. Zhao, X. Mei, and G. Gong. Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. International Journal of Machine Tools and Manufacture, 97:60–71, 2015. doi: 10.1016/j.ijmachtools.2015.07.003.
[8] W.S. Yun, S.K. Kim, and D.W. Cho. Thermal error analysis for a CNC lathe feed drive system. International Journal of Machine Tools and Manufacture, 39:1087–1101, 1999. doi: 10.1016/S0890-6955(98)00073-X.
[9] H. Shi, B. He, Y. Yue, C. Min, and X. Mei. Cooling effect and temperature regulation of oil cooling system for ball screw feed drive system of precision machine tool. Applied Thermal Engineering, 161:114150, 2019. doi: 10.1016/j.applthermaleng.2019.114150.
[10] Z.Z. Xu, X.J. Liu, H.K. Kim, J.H. Shin, and S.K. Lyu. Thermal error forecast and performance evaluation for an air-cooling ball screw system. International Journal of Machine Tools and Manufacture, 51(7-8):605–611, 2011. doi: 10.1016/j.ijmachtools.2011.04.001.
[11] S.-C. Huang. Analysis of a model to forecast thermal deformation of ball screw feed drive systems. International Journal of Machine Tools and Manufacture, 35,(8):1099–1104, 1995. doi: 10.1016/0890-6955(95)90404-A.
[12] T.-J. Li, J.-H. Yuan, Y.-M. Zhang, and C.-Y. Zhao. Time-varying reliability prediction modeling of positioning accuracy influenced by frictional heat of ball-screw systems for CNC machine tools. Precision Engineering, 64:147–156, 2020. doi: 10.1016/j.precisioneng.2020.04.002.
[13] C. Ma, J. Liu, and S. Wang. Thermal error compensation of linear axis with fixed-fixed installation. International Journal of Mechanical Sciences, 175:105531, 2020. doi: 10.1016/j.ijmecsci.2020.105531.
[14] J. Zapłata and M. Pajor. Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precision Engineering, 60:160–166, 2019. doi: 10.1016/j.precisioneng.2019.07.011.
[15] W. Feng, Z. Li, Q. Gu, and J. Yang. Thermally induced positioning error modelling and compensation based on thermal characteristic analysis. International Journal of Machine Tools and Manufacture, 93:26–36, 2015. doi: 10.1016/j.ijmachtools.2015.03.006.
[16] H. Zhou, P. Hu, H. Tan, J. Chen, and G. Liu. Modelling and compensation of thermal deformation for machine tool based on the real-time data of the CNC system. Procedia Manufacturing, 26:1137–1146, 2018. doi: 10.1016/j.promfg.2018.07.150.
[17] A.A. Kendoush. An approximate solution of the convective heat transfer from an isothermal rotating cylinder. International Journal of Heat and Fluid Flow, 17(4):439–441, 1996. doi: 10.1016/0142-727X(95)00002-8.
[18] T.L. Bergman, F.P. Incropera, D.P. DeWitt, and A.S. Lavine. Fundamentals of Heat and Mass Transfer. 7th edition, John Wiley & Sons, 2011.
[19] Z. Li, K. Fan, J. Yang, and Y. Zhang. Time-varying positioning error modeling and compensation for ball screw systems based on simulation and experimental analysis. The International Journal of Advanced Manufacturing Technology, 73:773–782, 2014. doi: 10.1007/s00170-014-5865-9.
[20] J.G. Yang, Y.Q. Ren, and Z.C. Du. An application of real-time error compensation on an NC twin-spindle lathe. Journal of Materials Processing Technology, 129(1-3):474–479, 2002. doi: 10.1016/S0924-0136(02)00618-0.
Go to article

Authors and Affiliations

Van-The Than
1
ORCID: ORCID
Chi-Chang Wang
2
Thi-Thao Ngo
1
Guan-Liang Guo
2

  1. Faculty of Mechanical Engineering, Hung Yen University of Technology and Education, Khoai Chau District, Hung Yen Province, Vietnam
  2. Department of Mechanical and Computer-Adided Engineering, Feng Chia University, Taichung, Taiwan, R.O.C.
Download PDF Download RIS Download Bibtex

Abstract

Ball-shaped concretions ("cannon balls") commonly occur in a marine, organic carbon-rich sedimentary sequence (Innkjegla Member) of the Carolinefjellet Formation (AptianAlbian) in Spitsbergen. The sedimentologic, petrographic and geochemical investigation of these concretions in the Kapp Morton section at Van Mijenfjorden gives insight into their origin and diagenetic evolution. The concretion bodies commenced to form in subsurface environment in the upper part of the sulphate reduction (SR) diagenetic zone. They resulted from pervasive cementation of uncompacted sediment enriched in framboidal pyrite by non-ferroan (up to 2 mol% FeCO3) calcite microspar at local sites of enhanced decomposition of organic matter. Bacterial oxidation of organic matter provided most of carbon dioxide necessary for concretionary calcite precipitation (δ13CCaCO3 ≈ -21%VPDB). Perfect ball-like shapes of the concretions originated at this stage, reflecting isotropic permeability of uncompacted sediment. The concretion bodies cracked under continuous burial as a result of amplification of stress around concretions in a more plastic sediment. The crack systems were filled by non-ferroan (up to 5 mol% FeCO3) calcite spar and blocky pyrite in deeper parts of the SR-zone. This cementation was associated with impregnation of parts of the concretion bodies with microgranular pyrite. Bacterial oxidation of organic matter was still the major source of carbon dioxide for crack-filling calcite precipitation (δ13CCaCO3 ≈ -19% VPDB). At this stage, the cannon-ball concretions attained their final shape and texture. Subsequent stages of concretion evolution involved burial cementation of rudimentary pore space with carbonate minerals (dolomite/ankerite, siderite, calcite) under increased temperature (δ18OCa,Mg,FeCO3 ≈-14% VPDB). Carbon dioxide for mineral precipitation was derived from thermal degradation of organic matter and from dissolution of skeletal carbonates (δ13CCa,Mg,FeCO3≈ - 8‰ VPDB). Kaolinite cement precipitated as the last diagenetic mineral, most probably during post−Early Cretaceous uplift of the sequence.

Go to article

Authors and Affiliations

Krzysztof P. Krajewski
Bartłomiej Luks
Download PDF Download RIS Download Bibtex

Abstract

A TiC-Mo 2C-WC-Ni alloy cermet was fabricated by high-energy ball milling (HEBM) and consolidation through spark plasma sintering. The TiC-based powders were synthesized with different milling times (6, 12, 24, and 48 h) and subsequently consolidated by rapid sintering at 1300°C and a load of 60 MPa. An increase in the HEBM time led to improved sinterability as there was a sufficient driving force between the particles during densification. Core-rim structures such as (Ti, W)C and (Ti, Mo)C (rim) were formed by Ostwald ripening while inhibiting the coarsening of the TiC (core) grains. The TiC grains became refined (2.57 to 0.47 µm), with evenly distributed rims. This led to improved fracture toughness (11.1 to 14.8 MPa·m 1/2) owing to crack deflection, and the crack propagation resistance was enhanced by mitigating intergranular fractures around the TiC core.
Go to article

Authors and Affiliations

Jeong-Han Lee
1
ORCID: ORCID
Jae-Cheol Park
1
ORCID: ORCID
Hyun-Kuk Park
1
ORCID: ORCID

  1. Automotive Materials & Component R&D Group, Korea Institute of Industrial Technology, 6, Cheomdan-gwagiro 208-gil, Buk-gu, Gwangju, 61012, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this work, we have designed a new high entropy alloy containing lightweight elements, e.g., Al, Fe, Mn, Ti, Cu, Si by high energy ball milling and spark plasma sintering. The composition of Si was kept at 0.75 at% in this study. The results showed that the produced AlCuFeMnTiSi0.75 high entropy alloy was BCC structured. The evolution of BCC1 and BCC2 phases was observed with increasing the milling time up to 60 h. The spark plasma sintering treatment of milled compacts from 650-950°C showed the phase separation of BCC into BCC1 and BCC2. The density and strength of these developed high entropy alloys (95-98%, and 1000 HV) improved with milling time and were maximum at 850°C sintering temperature. The current work demonstrated desirable possibilities of Al-Si based high entropy alloys for substitution of traditional cast components at intermediate temperature applications.
Go to article

Bibliography

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
[2] B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, 1st edn. Butterworth-Heinemann, Oxford 2014.
[3] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377, 213 (2004).
[4] B. Cantor, Entropy 16, 4749 (2014). [5] W. Li, S. Cui, J. Han, C. Xu, Rare Met. 25, 133 (2006).
[6] A. Kumar, M. Gupta, Metals 6 (9), 199 (2016)
[7] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett. 3, 95 (2014).
[8] K. Tseng, Y. Yang, C. Juan, T. Chin, C. Tsai, J. Yeh, Sci China Technol Sci. 61, 184 (2018).
[9] A. Sharma, D.U. Lim, J.P. Jung, Mater. Sci. Technol. 32 (8), 773 (2016).
[10] J.J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, J. Alloy. Compd. 760, 15 (2018).
[11] J.M. Torralba, P. Alvaredo, A.G. Junceda, Powder Met. 63, 227 (2020).
[12] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, (3rd ed.), New York, Prentice Hall, 2001.
[13] M.J. Chae, A. Sharma, M.C. Oh, B. Ahn, Met. Mater. Int. 27, 629 (2021).
[14] A. Sharma, M.C. Oh, B. Ahn, Mater. Sci. Eng. A 797, 140066 (2020).
[15] J.M. Sanchez, I. Vicario, J. Albizuri, T. Guraya, E.M. Acuña, Sci Rep. 9, 6792 (2019).
[16] A. Kumar, P. Dekhne, A.K. Swarnakar, M. Chopkar, Mater. Res. Exp. 6, 026532 (2019).
Go to article

Authors and Affiliations

Minsu Kim
1
Ashutosh Sharma
1
ORCID: ORCID
Myoung Jin Chae
1
Hansung Lee
1
ORCID: ORCID
Byungmin Ahn
1
ORCID: ORCID

  1. Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-ro, Suwon-si, Gyeonggi, 16499, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, the alloying of Ti, Al and Dy powders by high energy ball milling, and the spark plasma sintering (SPS) characteristics of as milled powders have been investigated based on the observation of microstructure. Pure Ti, 6wt% Al and 4wt% Dy powders were mixed and milled with zirconia balls at 600 ~ 1000 rpm for 3h in an Ar gas. The initial sizes of Ti, Al and Dy powders were approximately 20, 40, and 200 μm, respectively. With increasing the milling speed from 600 to 1000 rpm, the size of mixing powders reduced from 120 to 15 μm. On the other hand, from XRD results of powders milled at higher speeds than 700rpm, the peaks of Ti3Al and AlDy phases were identified, indicating the successful alloying. Therefore, the powders milled at 800 rpm have been employed for the SPS under the applied pressure of 50 MPa at 1373K for 15 min. In the SPSed sample, the Al3Dy and two ternary Ti-Al-Dy phases were newly detected, while the peak of AlDy phase disappeared. The SPSed Ti-6Al-4Dy alloy revealed high relative density and micro-hardness of approximately 99% and 950Hv, respectively.
Go to article

Bibliography

[1] M . Selva Kumar, P. Chandrasekar, P. Chandramohan, M. Mohanraj, Mater. Charact. 73, 43-51 (2012).
[2] T. Matsuo, T. Nozaki, T. Asai, S.Y. Chang, M. Takeyama, Intermetallics 6, 695-698 (1998).
[3] K. Kondoh, T. Threrujirapapomg, J. Umeda, B. Fugetsu, Compos. Sci. Tech. 72, 1291-1297 (2012).
[4] F . Petzoldt, V. Friederici, P. Imgrumd, C. Aumund-Kopp, J. Korea Powder Metall. Inst. 21, 1-6 (2014).
[5] Y. Song, D.S. Xu, R. Yang, D. Li, W.T. Wu, Z.X. Guo, Mater. Sci. and Eng. A A260, 269-274 (1999).
[6] T. Kawabata, T. Tamura, O. Izumi, Metall. Trans. 24A, 141-150 (1993).
[7] S.M. Park, S.W. Nam, J.Y. Cho, S.H. Lee, S.G. Hyun, T.S. Kim, Arch. Metall. Mater. 65, 1281-1285 (2020).
[8] S.W. Nam, R.M. Zarar, S.M. Park, S.H. Lee, S.G. D.H. Kim, T.S. Kim Arch. Metall. Mater. 65, 1273-1276 (2020).
[9] S .M. Hong, E.K. Park, K.Y. Kim, J.J. Park, M.K. Lee, C.K. Rhee, J.K. Lee, Y.S. Kwon, J. Kor. Powd. Met. Inst. 19, 32-39 (2012).
[10] H.P. Klug, L.E. Alexander, John Wiley and Sons, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, New York 1997.
[11] S .J. Park, Y.S. Song, K.S. Nam, S.Y. Chang, J. Kor. Powd. Met. Inst. 19, 122-126 (2012).
[12] S .Y. Chang, B.S. Kim, Y.S. Song, K.S. Nam, J. Nanosci. and Nanotech. 12, 1353-1356 (2012).
[13] B.S. Kim, D.H. Lee, S.Y. Chang, Modern Physics Letters B 23, 3919-3923 (2009).
[14] T. Takeuchi, M. Tabuchi, H. Kageyama, Y. Suyama, J. Am. Ceram. Soc. 82, 939-943 (1999).
[15] Z.J. Shen, M. Johnson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 85, 1921-1927 (2002).
[16] G.D. Zhan, J.D. Kuntz, J.L. Wan, A.K. Mukherjee, Nat. Mat. 2, 38-42 (2003).
[17] J.Y. Suh, Y.S. Song, S. Y. Chang, Arch. Metall. Mater. 64, 567-571 (2019).
[18] S .Y. Chang, S.T. Oh, M.J. Suk, C.S. Hong, J. Kor. Powd. Met. Inst. 21, 97-101 (2014).
[19] L. Gao, H. Miyamoto, J. Inorg. Mater. 12, 129-133 (1997). [20] M . Tokita, J. Soc. Powder Technol. 30, 790-804 (1993).
[21] D.J. Kim et al., Korean Powder Metallurgy Inst, Powder Metallurgy & Particulate Materials Processing, Seoul 2010.
[22] H. Zhou, W. Liu, S. Yuan, J. Yan, J. Alloys and Comp. 336, 218- 221 (2002).
[23] S. Niemann, W. Jeitschko, J. Solid State Chem. 114, 337-341 (1995).
[24] S. Niemann, W. Jeitschko, J. Solid State Chem. 116, 131-135 (1995).
[25] http://asm.matweb.com/search/SpecificMaterial.asp?bassnum =MTP641.
[26] S .Y. Chang, S.J. Cho, S.K. Hong, D.H. Shin, J. Alloys and Comp. 316, 275-279 (2001).
[27] W.H. Lee, J.G. Seong, Y.H. Yoon, C.H. Jeong, C.J. Van Tyne, H.G. Lee, S.Y. Chang, Ceramics Inter. 45, 8108-8114 (2019).
Go to article

Authors and Affiliations

Yuri Kim
1
Hoseong Rhee
1
ORCID: ORCID
Si Young Chang
1
ORCID: ORCID

  1. Korea Aerospace University, Department of Materials Science and Engineering, Goyang 10540, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this work Response Surface Methodology and Central Composite Rotatable Design were applied to find high-energy mixing process parameters enabling flow properties of highly cohesive Disulfiram powder to be improved. Experiments were conducted in a planetary ball mill. The response functions were created for an angle of repose and compressibility index as measures of powder flowability. To accomplish an optimisation procedure of mixing process parameters according to a desirability function approach, the results obtained earlier for potato starch, as another cohesive coarse powder, were also employed. Coupling these results with those achieved in a previous work, it was possible to develop some guidelines of practical importance allowing mixing conditions to be predicted towards flow improvement of fine and coarse powders.
Go to article

Authors and Affiliations

Karolina M. Leś
1
ORCID: ORCID
Ireneusz Opaliński
1
ORCID: ORCID

  1. Department of Chemical and Process Engineering, Rzeszow University of Technology, al. Powstanców Warszawy 6, 35-959 Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Mixture of nickel and titanium powders were milled in planetary mill under argon atmosphere for 100 hours at room temperature. Every 10 hours the structure, morphology and chemical composition was studied by X-ray diffraction method (XRD), scanning electron microscope (SEM) as well as electron transmission microscope (TEM). Analysis revealed that elongation of milling time caused alloying of the elements. After 100 hours of milling the powders was in nanocrystalline and an amorphous state. Also extending of milling time affected the crystal size and microstrains of the alloying elements as well as the newly formed alloy. Crystallization of amorphous alloys proceeds above 600°C. In consequence, the alloy (at room temperature) consisted of mixture of the B2 parent phase and a small amount of the B19’ martensite. Dependently on the milling time and followed crystallization the NiTi alloy can be received in a form of the powder with average crystallite size from 1,5 up to 4 nm.

Go to article

Authors and Affiliations

P. Salwa
T. Goryczka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The machining accuracy of CNC machine tools is significantly affected by the thermal deformation of the feed system. The ball screw feed system is extensively used as a transmission component in precise CNC machine tools, responsible for converting rotational motion into linear motion or converting torque into repetitive axial force. This study presents a multi-physical coupling analysis model for the ball screw feed system, considering internal thermal generation, intending to reduce the influence of screw-induced thermal deformation on machining accuracy. This model utilizes the Fourier thermal conduction law and the principle of energy conservation. By performing calculations, the thermal source and thermal transfer coefficient of the ball screw feed system are determined. Moreover, the thermal characteristics of the ball screw feed system are effectively analyzed through the utilization of finite element analysis. To validate the proposed analysis model for the ball screw feed system, a dedicated test platform is designed and constructed specifically to investigate the thermal characteristics of the ball screw feed system in CNC machine tools. By selecting specific CNC machine tools as the subjects of investigation, a comprehensive study is conducted on the thermal characteristics of the ball screw feed system. The analysis entails evaluating parameters like temperature field distribution, thermal deformation, thermal stress, and thermal equilibrium state of the ball screw feed system. By comparing the simulation results from the analysis model with the experimental test results, the study yields the following findings: The maximum absolute error between the simulated and experimental temperatures at each measuring point of the feed system components is 2.4◦C, with a maximum relative error of 8.7%. The maximum absolute error between the simulated and experimental temperatures at the measuring point on the lead screw is 2.0◦C, with a maximum relative error of 6.8%. The thermal characteristics obtained from the steady-state thermal analysis model of the feed system exhibit a prominent level of agreement with the experimental results. The research outcomes presented in this paper provide valuable insights for the development of ball screw feed systems and offer guidance for the thermal design of machine tools.
Go to article

Authors and Affiliations

Junjian Zheng
1
ORCID: ORCID
Xiaolei Deng
2
Junshou Yang
2
Wanjun Zhang
2
Xiaoliang Lin
2
Shaofei Jiang
1
Xinhua Yao
3
Hongchen Shen
3

  1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
  2. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
  3. School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of FluidPower and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download PDF Download RIS Download Bibtex

Abstract

The lubrication of angular contact ball bearings under high-speed motion conditions is particularly important to the working performance of rolling bearings. Combining the contact characteristics of fluid domain and solid domain, a lubrication calculation model for angular contact ball bearings is established based on the RNG k-ε method. The pressure and velocity characteristics of the bearing basin under the conditions of rotational speed, number of balls and lubricant parameters are analyzed, and the lubrication conditions and dynamics of the angular contact ball bearings under different working conditions are obtained. The results show that the lubricant film pressure will rise with increasing speed and viscosity of the lubricant. The number of balls affects the pressure and velocity distribution of the flow field inside the bearing but has a small effect on the values of the characteristic parameters of the bearing flow field. The established CFD model provides a new approach to study the effect of fluid flow on bearing performance in angular contact ball bearings.
Go to article

Bibliography

[1] B. Yan, L. Dong, K. Yan, F. Chen, Y. Zhu, and D. Wang. Effects of oil-air lubrication methods on the internal fluid flow and heat dissipation of high-speed ball bearings. Mechanical Systems and Signal Processing, 151:107409, 2021. doi: 10.1016/j.ymssp.2020.107409.
[2] H. Bao, X. Hou, X. Tang, and F. Lu. Analysis of temperature field and convection heat transfer of oil-air two-phase flow for ball bearing with under-race lubrication. Industrial Lubrication and Tribology, 73(5):817–821, 2021. doi: 10.1108/ilt-03-2021-0067/v2/decision1.
[3] T.A. Harris. Rolling Bearing Analysis. Taylor & Francis Inc. 1986.
[4] T.A. Harris and M.N. Kotzalas. Advanced Concepts of Bearing Technology. Taylor & Francis Inc. 2006.
[5] F.J. Ebert. Fundamentals of design and technology of rolling element bearings. Chinese Journal of Aeronautics, 23(1):123-136, 2010. doi: 10.1016/s1000-9361(09)60196-5.
[6] T.A. Harris. An analytical method to predict skidding in high speed roller bearings. A S L E Transactions, 9(3):229–241, 1966. doi: 10.1080/05698196608972139.
[7] A. Wang, S. An, and T. Nie. Analysis of main bearings lubrication characteristics for diesel engine. In: IOP Conference Series: Materials Science and Engineering, 493(1):012135, 2019. doi: 10.1088/1757-899X/493/1/012135.
[8] W. Zhou, Y. Wang, G. Wu, B. Gao, and W. Zhang. Research on the lubricated characteristics of journal bearing based on finite element method and mixed method. Ain Shams Engineering Journal, 13(4):101638, 2022. doi: 10.1016/j.asej.2021.11.007.
[9] J. Chmelař, K. Petr, P. Mikeš, and V. Dynybyl. Cylindrical roller bearing lubrication regimes analysis at low speed and pure radial load. Acta Polytechnica, 59(3):272–282, 2019. doi: 10.14311/AP.2019.59.0272.
[10] C. Wang, M. Wang, and L. Zhu. Analysis of grooves used for bearing lubrication efficiency enhancement under multiple parameter coupling. Lubricants, 10(3):39, 2022. doi: 10.3390/lubricants10030039.
[11] Z. Xie and W. Zhu. An investigation on the lubrication characteristics of floating ring bearing with consideration of multi-coupling factors. Mechanical Systems and Signal Processing, 162:108086, 2022. doi: 10.1016/j.ymssp.2021.108086.
[12] M. Almeida, F. Bastos, and S. Vecchio. Fluid–structure interaction analysis in ball bearings subjected to hydrodynamic and mixed lubrication. Applied Sciences, 13(9):5660, 2023. doi: 10.3390/app13095660.
[13] J. Sun, J. Yang, J. Yao, J. Tian, Z. Xia, H. Yan, and Z. Bao. The effect of lubricant viscosity on the performance of full ceramic ball bearings. Materials Research Express, 9(1):015201, 2022. doi: 10.1088/2053-1591/ac4881.
[14] D.Y. Dhande and D.W. Pande. A two-way {FSI} analysis of multiphase flow in hydrodynamic journal bearing with cavitation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39:3399–3412, 2017. doi: 10.1007/s40430-017-0750-8.
[15] H. Liu, Y. Li, and G. Liu. Numerical investigation of oil spray lubrication for transonic bearings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40:401, 2018. doi: 10.1007/s40430-018-1317-z.
Go to article

Authors and Affiliations

Bowen Jiao
1
ORCID: ORCID
Qiang Bian
1
ORCID: ORCID
Xinghong Wang
1
Chunjiang Zhao
1
ORCID: ORCID
Ming Chen
1
Xiangyun Zhang
2

  1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, China
  2. Luoyang Bearing Research Institute Co., Ltd, Luoyang, China
Download PDF Download RIS Download Bibtex

Abstract

The purpose of drumlin formation is to facilitate glacier flow. Drumlins form in a deforming layer between ice and ground, they produce a pimpled ground surface which causes less drag in the flowing system, after the fashion of the Prandtl effect which reduces boundary layer detachment (as in the flying golf ball). This pimpled surface has selforganising properties and this causes the development of a low drag situation. The drumlin field is the critical phenomenon; the formation of individual drumlins is a small part of the overall effect.
Go to article

Authors and Affiliations

Ian J. Smalley
Ping Lu
Ian F. Jefferson

This page uses 'cookies'. Learn more