Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 35
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

Go to article

Authors and Affiliations

Marcin Grodzki
Piotr Darnowski
Grzegorz Niewiński
Download PDF Download RIS Download Bibtex

Abstract

Building a Strategic Battery Value Chain in Europe COM/2019/176 is a priority for EU policy. Europe’s current share of global cell production is only 3%, while Asia has already reached 85%. To ensure a competitive position and independence in the battery market, Europe must act quickly and comprehensively in the field of innovation, research and construction of the infrastructure needed for large-scale battery production. The recycling of used batteries can have a significant role in ensuring EU access to raw materials. In the coming years, a very rapid development of the battery and rechargable battery market is forecast throughout the EU. In the above context, the recycling of used batteries plays an important role not only because of their harmful content and environmental impact, or adverse impact on human health and life, but also the ability to recover many valuable secondary raw materials and combine them in the battery life cycle (Horizon 2010 Work Programme 2018–2020 (European Commission Decision C(2019) 4575 of 2 July 2019)). In Poland, more than 80% of used batteries are disposable batteries, which, together with municipal waste, end up in a landfill and pose a significant threat to the environment. This paper examines scenarios and directions for development of the battery recycling market in Poland based on the analysis of sources of financing, innovations as well as economic and legal changes across the EU and Poland concerning recycling of different types of batteries and rechargable batteries.

Go to article

Authors and Affiliations

Agnieszka Nowaczek
ORCID: ORCID
Joanna Kulczycka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an innovative solution for increasing life of lead-acid batteries used in a glider launcher. The study is focused on upgrading a charging system instead of a costly full replacement of it. Based on literature review, the advanced three-stage charging profile was indicated. The new topology of the power converter was proposed and a simulation model was developed. A simulation study was performed which leads to a conclusion that the suggested solution can be successfully applied to the studied device. As a result, the conclusion of this work is the recommendation for modification of the launching system with an additional converter enabling 3 stage charging.

Go to article

Authors and Affiliations

Wojciech Aleksander Rosiński
Szymon Potrykus
Michal Sergiusz Michna
Download PDF Download RIS Download Bibtex

Abstract

Energy storage, as a flexible resource that comprehensively supports network operation, will grow increasingly indispensable as the share of renewables increases.
Go to article

Authors and Affiliations

Krzysztof Rafał
Paweł Grabowski
Download PDF Download RIS Download Bibtex

Abstract

Mobile devices have become an integral part of our life and provide dozens of useful services to their users. However, usability of mobile devices is hindered by battery lifetime. Energy conservation can extend battery lifetime, however, any energy management policy requires accurate prediction of energy consumption, which is impossible without reliable energy measurement and estimation methods and tools. We present an analysis of the energy measurement methodologies and describe the implementations of the internal (profiling) software (proprietary, custom) and external software-based (Java API, Sensor API, GSM AT) energy measurement methodologies. The methods are applied to measure energy consumption on a variety of mobile devices (laptop PC, PDA, smart phone). A case study of measuring energy consumption on a mobile computer using 3DMark06 benchmarking software is presented

Go to article

Authors and Affiliations

Robertas Damaševičius
Vytautas Štuikys
Jevgenijus Toldinas
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses selected problems regarding a high-frequency improved current-fed quasi-Z-source inverter (iCFqZSI) designed and built with SiC power devices. At first, new, modified topology of the impedance network is presented. As the structure is derived from the series connection of two networks, the voltage stress across the SiC diodes and the inductors is reduced by a factor of two. Therefore, the SiC MOSFETs may be switched with frequencies above 100 kHz and volume and weight of the passive components is decreased. Furthermore, additional leg with two SiC MOSFETs working as a bidirectional switch is added to limit the current stress during the short-through states. In order to verify the performance of the proposed solution a 6 kVA laboratory model was designed to connect a 400 V DC source (battery) and a 3£400 V grid. According to presented simulations and experimental results high-frequency iCFqZSI is bidirectional – it may act as an inverter, but also as a rectifier. Performed measurements show correct operation at switching frequency of 100 kHz, high quality of the input and output waveforms is observed. The additional leg increases efficiency by up to 0.6% – peak value is 97.8%.

Go to article

Authors and Affiliations

P. Trochimiuk
M. Zdanowski
J. Rabkowski
Download PDF Download RIS Download Bibtex

Abstract

Lcachates from municipal solid waste landfills should be included in the group of strongly contaminated industrial wastewaters. This results form the presence of highly concentrated various organic and inorganic compounds, which frequently have toxic properties. Therefore, the proper purification of the leachates prior to their discharging to the environment is of great importance. One of the chemical methods that can be used for the purification of leachates is coagulation. The main objective of the experiments presented in the current study was to determine the effect of coagulation, combined with sedimentation, on the physicchemical and toxicological characteristics of leachates from one of a municipal solid waste landfill in Poland. Standard .jar-test" experiments were employed for coagulation. Polyaluminum chloride and ferric chloride were used as coagulants. Raw leachates as well as those after coagulation were tested for toxicity using a battery of tests embracing algal growth inhibition test, microbiotests and IQ Toxicity Tests with crustaceans and bacterial luminescence inhibition test (LUM!Stox). The studies carried out demonstrated that ferric chloride (0.92 g Fc3·/CODc, removed) is more effective technologically in the removal of organic compounds from lcachates than polyaluminum chloride (1.22 g AP'/CODc, removed). For optimal doses of coagulants the most advantageous coagulation effects were achieved at pH 6.5-6.6, adjusted with the use of NaOH. Coagulation conducted under optimal conditions allows for reducing the content of organic compounds, as expressed by CODc, values, from 40 to 84%. This effect of organic compound removal from leachatcs in the process of coagulation did not result in significant decrease of their toxicity, For the above reasons the coagulation process can be useful only as one of the clements· of a technological setup for the purification of leachates from municipal solid waste landfills. The battery of tests used in the studies proved usefulness for the evaluation of the toxicity of leachatcs with varied degree of contamination as well as at various stages of their purification.
Go to article

Authors and Affiliations

Jacek Wąsowski
Bożenna Słomczyńska
Tomasz Słomczyński
Download PDF Download RIS Download Bibtex

Abstract

Contemporary societies are strongly dependent existentially and economically on the supply of electricity, both in terms of supplying devices from the power grid, as well as the use of energy storage and constant voltage sources. Electrochemical batteries are commonly used as static energy storage. According to forecasts provided by the Environmental Protection Agency at the global and EU level, in 2025 lead-acid technologies will continue to dominate, with the simultaneous expansion of the lithium-ion battery market. The production, use and handling of used batteries are associated with a number of environmental and social challenges. The way batteries influence the environment is becoming more and more significant, not only in the phase of their use but also in the production phase. The article presents how to effectively reduce the environmental impact of the battery production process by stabilizing it. In the presented example, the proposed changes in the battery assembly process facilitated the minimization of material losses from 0.33% to 0.05%, contributing to the reduction of the negative impact on the environment.
Go to article

Authors and Affiliations

Agnieszka Kujawinska
1
ORCID: ORCID
Adam Hamrol
1
ORCID: ORCID
Krzysztof Brzozowski
1

  1. Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Unmanned, battery-powered quadrotors have a limited onboard energy resources. However, flight duration might be increased by reasonable energy expenditure. A reliable mathematical model of the drone is required to plan the optimum energy management during the mission. In this paper, the theoretical energy consumption model was proposed. A small, low-cost DJI MAVIC 2 Pro quadrotor was used as a test platform. Model parameters were obtained experimentally in laboratory conditions. Next, the model was implemented in MATLAB/Simulink and then validated using the data collected during real flight trials in outdoor conditions. Finally, the Monte-Carlo simulation was used to evaluate the model reliability in the presence of modeling uncertainties. It was obtained that the parameter uncertainties could affect the amount of total consumed energy by less than 8% of the nominal value. The presented model of energy consumption might be practically used to predict energy expenditure, battery state of charge, and voltage in a typical mission of a drone.
Go to article

Bibliography

[1] Z. He and L. Zhao. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters. The Scientific World Journal, 2014: 280180, 2014. doi: 10.1155/2014/280180.
[2] P. Jimenez, P. Lichota, D. Agudelo, and K. Rogowski. Experimental validation of total energy control system for UAVs. Energies, 13(1):14, 2020. doi: 10.3390/en13010014.
[3] C. Aoun, N. Daher, and E. Shammas. An energy optimal path-planning scheme for quadcopters in forests. 2019 IEEE 58th Conference on Decision and Control (CDC), pages 8323–8328, Nice, France, 11–13 December 2019. doi: 10.1109/CDC40024.2019.9029345.
[4] T.A. Rodrigues, J. Patrikar, A. Choudhry, J. Feldgoise, V. Arcot, A. Gahlaut, S. Lau, B. Moon, B. Wagner, H. S. Matthews, S. Scherer, and C. Samaras. In-flight positional and energy use data set of a DJI Matrice 100 quadcopter for small package delivery. Scientific Data, 8:155, 2021. doi: 10.1038/s41597-021-00930-x.
[5] F. Yacef, N. Rizoug, and L. Degaa. Energy-efficiency path planning for quadrotor UAV under wind conditions. 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), pages 1133–1138, Prague, Czech Republic, 29 June–2 July 2020. doi: 10.1109/CoDIT49905.2020.9263968.
[6] F. Yacef, O. Bouhali, M. Hamerlain, and N. Rizoug. Observer-based adaptive fuzzy backstepping tracking control of quadrotor unmanned aerial vehicle powered by Li-ion battery. Journal of Intelligent and Robotic Systems, 84(1–4):179–197, 2016. doi: 10.1007/s10846-016-0345-0.
[7] F. Yacef, N. Rizoug, O. Bouhali, and M. Hamerlain. Optimization of energy consumption for quadrotor UAV. International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017, Toulouse, France, 18-21 September 2017.
[8] F. Yacef, N. Rizoug, L. Degaa, O. Bouhali, and M. Hamerlain. Trajectory optimisation for a quadrotor helicopter considering energy consumption. 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), pages 1030–1035, Barcelona, Spain, 5–7 April 2017. doi: 10.1109/CoDIT.2017.8102734.
[9] G. Jia, S. Gong, R. Guo, and M. Li. Energy consumption model of BLDC quadrotor UAVs for mobile communication trajectory planning. TechRxiv. doi: 10.36227/techrxiv.19181228.v1.
[10] F. Morbidi, R. Cano, and D. Lara. Minimum-energy path generation for a quadrotor UAV. 2016 Ieee International Conference on Robotics and Automation (ICRA), pages 1492–1498, Stockholm, Sweden, 16–21 May 2016. doi: 10.1109/ICRA.2016.7487285.
[11] S. Jee and H. Cho. Comparing energy consumption following flight pattern for quadrotor. Journal of IKEEE, 22(3):747–753, 2018. doi: 10.7471/ikeee.2018.22.3.747.
[12] C.W. Chan and T.Y. Kam. A procedure for power consumption estimation of multi-rotor unmanned aerial vehicle. Journal of Physics: Conference Series, 1509:012015, 2020. doi: 10.1088/1742-6596/1509/1/012015.
[13] Y. Wang, Y. Wang, and B. Ren. Energy saving quadrotor control for field inspection. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(3):1768–1777, 2020. doi: 10.1109/TSMC.2020.3037071.
[14] H. Lu, K. Chen, X.B. Zhai, B. Chen, and Y. Zhao. Tradeoff between duration and energy optimization for speed control of quadrotor unmanned aerial vehicle. 2018 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN), pages 1–5, Shenzhen, China, 5–7 December 2018. doi: 10.1109/ISPCE-CN.2018.8805801.
[15] N. Bezzo, K. Mohta, C. Nowzari, I. Lee, V. Kumar, and G. Pappas. Online planning for energy-efficient and disturbance-aware UAV operations. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5027–5033, Daejeon, Korea, 9–14 October 2016. doi: 10.1109/IROS.2016.7759738.
[16] V. Agarwal and R.R. Tewari. Improving energy efficiency in UAV attitude control using deep reinforcement learning. Journal of Scientific Research, 65(3):209–219, 2021.
[17] A. Korneyev, M. Gorobetz, I. Alps, and L. Ribickis. Adaptive traction drive control algorithm for electrical energy consumption minimisation of autonomous unmanned aerial vehicle. Electrical, Control and Communication Engineering, 15(2):62–70, 2019. doi: 10.2478/ecce-2019-0009.
[18] J.F. Roberts, J.-C. Zufferey, and D. Floreano. Energy management for indoor hovering robots. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1242–1247, Nice, France, 22–26 September 2008. doi: 10.1109/IROS.2008.4650856.
[19] A.S. Prasetia, R.-J. Wai, Y.-L. Wen, and Y.-K. Wang. Mission-based energy consumption prediction of multirotor UAV. IEEE Access, 7:33055–33063, 2019. doi: 10.1109/ACCESS.2019.2903644.
[20] X. Wu, J. Zeng, A. Tagliabue, and M. W. Mueller. Model-free online motion adaptation for energy-efficient flight of multicopters. Arxiv. doi: 10.48550/arXiv.2108.03807.
[21] C. Di Franco and G. Buttazzo. Energy-aware coverage path planning of UAVs. 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, pages 111–117, Vila Real, Portugal, 08–10 April 2015. doi: 10.1109/ICARSC.2015.17.
[22] T. Dietrich, S. Krug, and A. Zimmermann. An empirical study on generic multicopter energy consumption profiles. 2017 Annual IEEE International Systems Conference (SysCon), pages 1–6, Montreal, QC, Canada, 24–27 April 2017. doi: 10.1109/SYSCON.2017.7934762.
[23] H.V. Abeywickrama, B.A. Jayawickrama, Y. He, and E. Dutkiewicz. Empirical power consumption model for UAVs. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pages 1-5, Chicago, IL, USA, 27–30 August 2018. doi: 10.1109/VTCFall.2018.8690666.
[24] R. Shivgan and Z. Dong. Energy-efficient drone coverage path planning using genetic algorithm. 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), pages 1–6, Newark, NJ, USA, 11–14 May 2020. doi: 10.1109/HPSR48589.2020.9098989.
[25] C. Di Franco and G. Buttazzo. Coverage path planning for UAVs photogrammetry with energy and resolution constraints. Journal of Intelligent & Robotic Systems, 83:445–462, 2016. doi: 10.1007/s10846-016-0348-x.
[26] N. Gao, Y. Zeng, J. Wang, D. Wu, C. Zhang, Q. Song, J. Qian and S. Jin. Energy model for UAV communications: Experimental validation and model generalization. China Communications, 18(7):253–264, 2021. doi: 10.23919/JCC.2021.07.020.
[27] N. Kreciglowa, K. Karydis, and V. Kumar, Energy efficiency of trajectory generation methods for stop-and-go aerial robot navigation. 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pages 656–662, Miami, USA, 13–16 June 2017. doi: 10.1109/ICUAS.2017.7991496.
[28] P. Pradeep, S.G. Park, and P. Wei. Trajectory optimization of multirotor agricultural. 2018 IEEE Aerospace Conference, pages 1–7, Big Sky, USA, 3–10 March 2018. doi: 10.1109/AERO.2018.8396617.
[29] M-h. Hwang, H-R. Cha and S.Y. Jung. Practical endurance estimation for minimizing energy consumption of multirotor unmanned aerial vehicles. Energies, 11(9):2221, 2018. doi: 10.3390/en11092221.
[30] A. Abdilla, A. Richards, and S. Burrow. Power and endurance modelling of battery-powered rotorcraft. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 675–680, Hamburg, Germany, 28 September–2 October 2015. doi: 10.1109/IROS.2015.7353445.
[31] J. Apeland, D. Pavlou, and T. Hemmingsen. Suitability Analysis of implementing a fuel cell on a multirotor drone. Journal of Aerospace Technology and Management, 12:e3220, 2020. doi: 10.5028/jatm.v12.1172.
[32] Z. Liu, R. Sengupta and A. Kurzhanskiy. A power consumption model for multi-rotor small unmanned aircraft systems. 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pages 310–315, Miami, FL, USA, 13–16 June 2017. doi: 10.1109/ICUAS.2017.7991310.
[33] L. Zhang, A. Celik, S. Dang, and B. Shihada. Energy-efficient trajectory optimization for UAV-assisted IoT networks. IEEE Transactions on Mobile Computing, 21(12):4323–4337, 2022. doi: 10.1109/TMC.2021.3075083.
[34] Y. Chen, D. Baek, A. Bocca, A. Macii, E. Macii, and M. Poncino. A case for a battery-aware model of drone energy consumption. 2018 IEEE International Telecommunications Energy Conference (INTELEC), pages 1–8, Turino, Italy, 7–11 October 2018. doi: 10.1109/INTLEC.2018.8612333.
[35] [Online]. https://www.dji.com/pl/mavic-2/info, [Accessed on: 13 July 2021].
[36] National Aeronautics and Space Administration, U.S. Standard Atmosphere, 1976, Washington, D.C., 1976.
[37] P.H. Zipfel. Modeling and Simulation of Aerospace Vehicle Dynamics. American Institute of Aeronautics and Astronautics. Reston, USA, 2000.
[38] D. Allerton. Principles of Flight Simulation. John Wiley and Sons, 2009.
[39] B.L. Stevens, F.L. Lewis, and E.N. Johnson. Aircraft Control and Simulation. Dynamics, Controls Design, and Autonomous Systems. John Wiley and Sons, 2015.
[40] M. Dreier. Introduction to Helicopter and Tiltrotor Simulation. American Institute of Aeronautics and Astronautics. Reston, USA, 2007.
[41] P. Lichota, F. Dul, and A. Karbowski. System identification and LQR controller design with incomplete state observation for aircraft trajectory tracking. Energies, 13(20):5354, 2020. doi: 10.3390/en13205354.
[42] M. Abzug. Computational Flight Dynamics. American Institute of Aeronautics and Astronautics. Reston, USA, 1998.
[43] S.K. Phang, C. Cai, B.M. Chen, and T.H. Lee. Design and Mathematical Modeling of a 4-Standard-Propeller (4SP) Quadrotor. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, pages 3270–3275, Beijing, China, 6–8 July 2012. doi: 10.1109/WCICA.2012.6358437.
[44] J. Sanketi, R. Kasliwal, S. Raghavan, and S. Awan. Modelling and simulation of a multi-quadcopter concept. International Journal of Engineering Research & Technology (IJERT), 5(10):566–571, 2016.
[45] N.M. Salma and K. Osman. Modelling and PID control system integration for quadcopter DJIF450 attitude stabilization. Indonesian Journal of Electrical Engineering and Computer Science, 19(3):1235–1244. doi: 10.11591/ijeecs.v19.i3.pp1235-1244.
[46] P. Pounds, R. Mahony, and P. Corke. Modelling and control of a large quadrotor robot. Control Engineering Practice, 18(7):691–699, 2010. doi: 10.1016/j.conengprac.2010.02.008.
[47] Z. Benić, P. Piljek, and D. Kotarski. Mathematical modelling of unmanned aerial vehicles with four rotors. Interdisciplinary Description of Complex Systems, 14(1):88–100, 2016. doi: 10.7906/indecs.14.1.9.
[48] I.M. Salameh, E.M. Ammar, and T.A. Tutunji. Identification of quadcopter hovering using experimental data. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pages 1–6, Amman, Jordan, 3–5 November 2015. doi: 10.1109/AEECT.2015.7360559.
[49] [Online]. Available: https://airdata.com [Accessed on: 27 January 2022].
[50] W. Jaafar and H. Yanikomeroglu. Dynamics of quadrotor UAVs for aerial networks: An energy perspective. Arxiv, 2019. doi: 10.48550/arXiv.1905.06703.
[51] P. Pradeep and P. Wei. Energy efficient arrival with rta constraint for multirotor eVTOL in urban air mobility. Journal of Aerospace Information Systems, 16(7):1–15, 2019. doi: 10.2514/1.I010710.
[52] F. Morbidi and D. Pisarski. Practical and accurate generation of energy-optimal trajectories for a planar quadrotor. 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 355–361, Xi'an, China, 30 May–5 June 2021. doi: 10.1109/ICRA48506.2021.9561395.
[53] T. Mesbahi, N. Rizoug, P. Bartholomeus, and P. Le Moigne. Li-ion battery emulator for electric vehicle applications. 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), pages 1–8, Beijing, China, 15–18 October 2013. doi: 10.1109/VPPC.2013.6671688.
[54] F. Li, W.-P. Song, B.-F. Song, and H. Zhang, Dynamic modeling, simulation, and parameter study of electric quadrotor system of Quad-Plane UAV in wind disturbance environment. International Journal of Micro Air Vehicles, 13:1–23, 2021. doi: 10.1177/17568293211022211.
[55] O. Tremblay and L-A. Dessaint. Experimental validation of a battery dynamic model for ev applications. World Electric Vehicle Journal, 3(2):289–298, 2009. doi: 10.3390/wevj3020289.
[56] S.M. Mousavi and M. Nikdel. Various battery models for various simulation studies and applications. Renewable and Sustainable Energy Reviews, 32:477–485, 2014. doi: 10.1016/j.rser.2014.01.048.
[57] S.M. Azam. Battery Identification, Prediction and Modelling. Master Thesis, Colorado State University, Fort Collins, Colorado, USA, 2018.
[58] E. Raszmann, K. Baker, Y. Shi, and D. Christensen. Modeling stationary lithium-ion batteries for optimization and predictive control. 2017 IEEE Power and Energy Conference at Illinois (PECI), pages 1–7, Champaign, IL, USA, 23–24 February 2017. doi: 10.1109/PECI.2017.7935755.
[59] H. Hemi, N.K. M’Sirdi, and A. Naamane. A new proposed shepherd model of a li-ion open circuit battery based on data fitting. IMAACA 2019, Lisbon, Portugal, 2019.
[60] [Online]: https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html. [Accessed on: 9 October 2021].
[61] H. Hinz. Comparison of lithium-ion battery models for simulating storage systems in distributed power generation. Inventions, 4(3):41, 2019. doi: 10.3390/inventions4030041.
[62] L.E. Romero, D.F. Pozo, and J.A. Rosales. Quadcopter stabilization by using PID controllers. Maskana, 5:175–186, 2016.
[63] A. Rodić and G. Mester. The modeling and simulation of an autonomous quad-rotor microcopter in a virtual outdoor scenario. A cta Polytechnica Hungarica, 8(4):107–122, 2011.
[64] A.L. Salih, M. Moghavvemi, H.A.F. Mohamed, and K.S. Gaeid. Flight PID controller design for a UAV quadrotor. Scientific Research and Essays, 5(23):3660–3667, 2010.
[65] V. Brito, A. Brito, L.B. Palma, and P. Gil. Quadcopter control approaches and performance analysis. In Proceedings of the 15th International Conference on Informatics in Control, Automation and–Robotics - Volume 1: ICINCO, pages 86–93, Porto, Portugal, 29–31 July, 2018. doi: 10.5220/0006902600960103.
[66] [Online]. Available: https://www.dji.com/pl/downloads/products/mavic-2. [Accessed on: 7 August 2021].
[67] M. Jacewicz, M. Żugaj, R. Głębocki, and P. Bibik. Quadrotor model for energy consumption analysis. Energies, 15(19):7136, 2022. doi: 10.3390/en15197136.
[68] M. Jacewicz, P. Lichota, D. Miedziński, and R. Głębocki. Study of model uncertainties influence on the impact point dispersion for a gasodynamicaly controlled projectile. Sensors, 22(9):3257, 2022. doi: 10.3390/s22093257.
[69] M. Jacewicz, R. Głębocki, and R. Ożóg. Monte-Carlo based lateral thruster parameters optimization for 122 mm rocket. In: R. Szewczyk, C. Zieliński, M. Kaliczyńska (eds) Automation 2020: Towards Industry of the Future. AUTOMATION 2020. Advances in Intelligent Systems and Computing, volume 1140, pages 125–134, Springer, 2020. doi: 10.1007/978-3-030-40971-5_12.
[70] C. Coulombe, J.-F. Gamache, A. Mohebbi, C. Abolfazl, U. Chouinard and S. Achiche, Applying robust design methodology to a quadrotor drone. In Proceedings of the 21st International Conference on Engineering Design (ICED17), Vol 4: Design Methods and Tools, Vancouver, Canada, 21–25 August 2017.
Go to article

Authors and Affiliations

Robert Głębocki
1
ORCID: ORCID
Marcin Żugaj
1
ORCID: ORCID
Mariusz Jacewicz
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Climate change is driving the transformation of energy systems from fossil to renewable energies. In industry, power supply systems and electro-mobility, the need for electrical energy storage is rising sharply. Lithium-based batteries are one of the most widely used technologies. Operating parameters must be determined to control the storage system within the approved operating limits. Operating outside the limits, i.e., exceeding or falling below the permitted cell voltage, can lead to faster aging or destruction of the cell. Accurate cell information is required for optimal and efficient system operation. The key is high-precision measurements, sufficiently accurate battery cell and system models, and efficient control algorithms. Increasing demands on the efficiency and dynamics of better systems require a high degree of accuracy in determining the state of health and state of charge (SOC). These scientific contributions to the above topics are divided into two parts. In the first part of the paper, a holistic overview of the main SOC assessment methods is given. Physical measurement methods, battery modeling, and the methodology of using the model as a digital twin of a battery are addressed and discussed. In addition, adaptive methods and artificial intelligence methods that are important for SOC calculation are presented. Part two of the paper presents examples of the application areas and discusses their accuracy.
Go to article

Authors and Affiliations

Marcel Hallmann
1
ORCID: ORCID
Christoph Wenge
2
ORCID: ORCID
Przemyslaw Komarnicki
1
ORCID: ORCID

  1. Magdeburg–Stendal University of Applied Sciences, Germany
  2. Fraunhofer IFF Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

The use of lithium-ion battery energy storage (BES) has grown rapidly during the past year for both mobile and stationary applications. For mobile applications, BES units are used in the range of 10–120 kWh. Power grid applications of BES are characterized by much higher capacities (range of MWh) and this area particularly has great potential regarding the expected energy system transition in the next years. The optimal operation of BES by an energy storage management system is usually predictive and based strongly on the knowledge about the state of charge (SOC) of the battery. The SOC depends on many factors (e.g. material, electrical and thermal state of the battery), so that an accurate assessment of the battery SOC is complex. The SOC intermediate prediction methods are based on the battery models. The modeling of BES is divided into three types: fundamental (based on material issues), electrical equivalent circuit (based on electrical modeling) and balancing (based on a reservoir model). Each of these models requires parameterization based on measurements of input/output parameters. These models are used for SOC modelbased calculation and in battery system simulation for optimal battery sizing and planning. Empirical SOC assessment methods currently remain the most popular because they allow practical application, but the accuracy of the assessment, which is the key factor for optimal operation, must also be strongly considered. This scientific contribution is divided into two papers. Paper part I will present a holistic overview of the main methods of SOC assessment. Physical measurement methods, battery modeling and the methodology of using the model as a digital twin of a battery are addressed and discussed. Furthermore, adaptive methods and methods of artificial intelligence, which are important for the SOC calculation, are presented. In paper part II, examples of the application areas are presented and their accuracy is discussed.
Go to article

Bibliography

[1] Komarnicki P., Kranhold M., Styczynski Z., Sektorenkopplung. Energetisch-nachhaltige Wirtschaft der Zukunft, ISBN: 978-3-658-33559-5, Springer Verlag (2021), DOI: 10.1007/978-3-658-33559-5.

[2] Komarnicki P., Lombardi P., Styczynski Z., Elektrische Energiespeichersysteme - Flexibilitätsoptionen für Smart Gridshardcover, ISBN 978-3-662-62801-0, Springer Verlag (2021), DOI: 10.1007/978-3- 662-62802-7.

[3] Forschungsstelle für Energiewirtschaft e.V. (FfE), Abschlussbericht zum Projekt: Kurzstudie Elektromobilität Modellierung für die Szenarienentwicklung des Netzentwicklungsplan, München (2019).

[4] Dechent P., Epp A., Jöst D., Preger Y., Attia P., Li W., Sauer D.U., ENPOLITE: Comparing lithium-ion cells across energy, power, lifetime, and temperature, ACS Energy Letters, vol. 6, pp. 2351–2335 (2021), DOI: 10.1021/acsenergylett.1c00743.

[5] Sterner M., Stadler I., Handbook of energy storage. Demand, technologies, integration, Springer Verlag (2019), DOI: 10.1007/978-3-662-55504-0.

[6] Rudnicki T., Wojcicki S., Metody wyznaczania stanu naladowania akumulatorow stosowane w pojazdach elektrycznych, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (in Polish), vol. 3, ISSN 2083-0157 (2014), DOI: 10.5604/20830157.1121381.

[7] Hannam M.A., Lipu M.S.H., Hussain A., Mohamed A., A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations, Renewable and Sustainable Energy Review, vol. 78 pp. 834–854 (2017), DOI: 10.1016/j.rser.2017.05.001.

[8] Dai H., Jiang B., Hu X.-S., Lin X., Wei X., Pecht M., Advance battery management strategies for sustainable energy future: Multilayer design concept and research trends, Renewable and Sustainable Energy Review, vol. 138, p. 110480 (2021), DOI: 10.1016/j.rser.2020.110480.

[9] Waag W., Fleicher C., Sauer D.U., Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles, Journal of Power Sources, vol. 258, pp. 321–339 (2014), DOI: 10.1016/j.jpowsour.2014.02.064.

[10] Zhang Y.-J., Guo C., Liu Y.-G., Ding F., Chen Z., Hao W., A novel strategy for power sources management in connected plug-in hybrid electric vehicles based on mobile edge computation framework, Journal of Power Sources, vol. 477, p. 228650 (2020), DOI: 10.1016/j.jpowsour.2020.228650.

[11] Styczynski P., Lombardi P., Styczynski Z., Electric energy storage systems, Report CIGRE WG C6.15, ISBN: 978-2-85873-147-3, no. 458, CIGRE, Paris (2011), DOI: 10.1007/978-3-662-53275-1.

[12] Rancillo G., Pocha Pinto Lucas A., Kotsakis E., Fulli G., Merlo M., Delfanti M., Masera M., Modelling a large-scale battery energy storage system for power grid application analysis, Energies, vol. 12, no. 17, p. 3312 (2019), DOI: 10.3390/en12173312.

[13] Zeh A., Müller M., Naumann M., Hesse H.C., Jossen A., Witzmann R., Fundamentals of using battery energy storage systems to provide primary control reserves in Germany, Batteries, vol. 2, p. 49 (2016), DOI: 10.3390/batteries2030029.

[14] Komarnicki P., Energy storage systems: power grid and marked use cases, Archives of Electrical Engineering, vol. 65, no. 3, pp. 495–511 (2016), DOI: 10.1515/aee-2016-0036.

[15] Ceran B., A comparative analysis of energy storage technologies, Energy Policy Journal, vol. 21, no. 3, pp. 97–110 (2018), DOI: 10.24425/124498.

[16] Parol M., Rokicki L., Parol S., Towards optimal operation in rural low voltage microgrids, Bul- letin of Polish Academy of Sciences, Technical Sciences, vol. 67, no. 4, pp. 799–812 (2019), DOI: 10.24425/bpasts.2019.130189.

[17] Paliwal N.K., Singh A.K., Singh N.K., Short-term optimal energy management in stand-alone mi- crogrid with battery energy storage, Archives of Electrical Engineering, vol. 67, no. 3, pp. 499–513 (2017), DOI: 10.3390/en13061454.

[18] Kucevica D., Tepe B., Englberger S., Parlikar A., Mühlbauer M., Bohlen O., Jossen A., Hesse H., Standard battery energy storage system profiles: analysis of various applications for stationary energy storage systems using a holistic simulation framework, Journal of Energy Storage, vol. 28, no. 4, p. 101077 (2020), DOI: 10.1016/j.est.2019.101077.

[19] Ghazavidozein M., Gomis-Bellmunt O., Mancarella P., Simultaneous provision of dynamic active and reactive power response from utility-scale battery energy storage system in weak grids, IEEE Transactions on Power System (2021), DOI: 110.1109/TPWRS.2021.3076218.

[20] European Commission, Commission Regulation (EU) 2017/1485 of establishing a guideline on electricity transmission system operation, Official Journal of the European Union, vol. 220, pp. 1–120 (2017).

[21] Li X.-J., Yao L.-Z., Hui D., Optimal control and management of a large-scale battery energy storage system to mitigate fluctuation and intermittence of renewable generations, Journal of Modern Power Systems and Clean Energy, vol. 4, no. 4, pp. 593–603 (2016), DOI: 10.1007/s40565-016-0247-y.

[22] Podder S., Khan M.Z.R., Comparison of lead acid and Li-ion battery in solar home system of Bangladesh, 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 434–438 (2016), DOI: 10.1109/ICIEV.2016.7760041.

[23] Hoppmann J., Volland J., Schmidt T.S., Hoffmann V.H., The economic viability of battery storage for residential solar photovoltaic systems – a review and a simulation model, Renewable and Sustainable Energy Reviews, vol. 39, pp. 1101–1118 (2014), DOI: 10.1016/j.rser.2014.07.068.

[24] Zhang R., Xia B., Li B., Cao L., Lai Y., Zheng W., Wang H., Wang W., State of the art of lithium-ion battery SOC estimation for electrical vehicles, Energies, vol. 11, no. 7, p. 1820 (2018), DOI: 10.3390/en11071820.

[25] Hallmann M., Wenge C., Komarnicki P., Evaluation methods for battery storage systems, IEEE 12th International Conference on Electrical Power Quality and Utilization (EPQU) (2020), DOI: 10.1109/EPQU50182.2020.9220321.

[26] Khandorin M.M., Estimation of the residual capacity of a lithium-ion battery in real time, (in Russian), in Khandorin M.M., Bukreev V.G. (eds.), Electrochemical power engineering (in Russian), pp. 65–693 (2014).

[27] May G.J., Standby batteries requirements for telecommunications power, Journal of Power Sources, vol. 158, no. 2, pp. 1117–1123 (2006), DOI: 10.1016/j.jpowsour.2006.02.083.


 [28] Wikipedia, Electrical System of the International Space Station, https://en.wikipedia.org/wiki/Elect rical_system_of_the_International_Space_Station, accessed April 2021.

[29] Heussen K., Koch S., Ubig A., Anderson G., Unified system-level modeling of intermittent renewable energy sources and energy storage for power system operation, IEEE System Journal, vol. 6, no. 1, pp. 140–151 (2011), DOI: 10.1109/JSYST.2011.2163020.

[30] Buchholz B., Frey H., Lewaldt N., Stephanblome T., Schwagerl C., Styczynski Z.A., Advanced planning and operation of dispersed generation ensuring power quality, security and efficiency in distribution systems, CIGRE 2004, Invited paper C6-206, CD-ROM, Paris (2004).

[31] Codeca F., Savaresi S.M., Manzoni V., The mix estimation algorithm for battery state-of-charge estimator: analysis of the sensitivity to measurement errors, Proceedings of the 48th IEEE Con- ference on Decision and Control, held jointly with 28th Chinese Control Conference (2009),  DOI: 10.1109/CDC.2009.5399759.

[32] Nejad S., Gladwin D.T., Stone D.A., Enhanced state-of-charge estimation for lithium-ion iron phosphate cells with flat open-circuit voltage curves, IECON2015-Yokohama, Japan (2015),  DOI: 10.1109/IECON.2015.7392591.

[33] Huria T., Ceraolo M., Gazzarri J., Jackey R., Simplified extended Kalman filter observer for SOC estimation of commercial power-oriented LFP lithium battery cells, SAE World Congress, Technical Paper Series (2013), DOI: 10.4271/2013-01-1544.

[34] Baccouche I., Jemmali S., Manai B., Omar N., Amara N., Improved OCV model of a li-ion NMC battery for online SOC estimation using the extended Kalman filter, Energies, vol. 10, no. 6, p. 764 (2017), DOI: 10.3390/en10060764.

[35] Zhang C., Jiang J., Zhang L., Liu S., Wang L., Loh P., A generalized SOC-OCV model for lithium- ion batteries and the SOC estimation for LNMCO battery, Energies, vol. 9, no. 11, p. 900 (2016), DOI: 10.3390/en9110900.

[36] Zheng Y., Ouyang M., Han X., Lu L., Li J., Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles, Journal of Power Sources, vol. 377, pp. 161–188 (2018), DOI: 10.1016/j.jpowsour.2017.11.094.

[37] Chen M., Rincon-Mora G.A., Accurate electrical battery model capable of predicting runtime and I–V performance, IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504–511 (2006), DOI: 10.1109/TEC.2006.874229.

[38] Thanagasundram S., Arunachala R., Makinejad K., Teutsch T., Jossen A., A cell level model for battery simulation, European Electric Vehicle Congress Brussels, Belgium (2012).

[39] Feng J.-H., Yang L., Zhao X.-W., Zhang H.-D., Qiang J., Online identification of lithium-ion bat- tery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction, Journal of Power Sources, vol. 281, pp. 192–203 (2015), DOI: 10.1016/j.jpowsour.2015.01.154.

[40] Rivera-Barrera J., Muñoz-Galeano N., Sarmiento-Maldonado H., SoC Estimation for lithium-ion Bat- teries: review and future challenges, Electronics, vol. 6, no. 4, p. 102 (2017), DOI: 10.3390/electronics6040102.

[41] He H., Xiong R., Fan J., Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach, Energies, vol. 4, no. 4, pp. 582–598 (2011), DOI: 10.3390/en4040582.

[42] Li Z., Huang J., Kiaw B.Y., Zjhang J., On state of charge determination for lithium-ion batteries, Journal of Power Sources, vol. 348, pp. 281–301 (2017), DOI: 10.1016/j.jpowsour.2017.03.001.

<[43] Attanayaka A., Karunadasa J.P., Hemapala K., Estimation of state of charge for lithium-ion batteries – a review, AIMS Energy, vol. 7, no. 2, pp. 186–210 (2019), DOI: 10.3934/energy.2019.2.186.

[44] Fleicher C., Waag W., Hey H.-M., Sauer D.U., On-line adaptive impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 2. Parameter and state estimation, Journal of Power Sources, vol. 262, pp. 457–482 (2014), DOI: 10.1016/j.jpowsour.2014.03.046.

[45] Zhang C., Allafi W., Dinh Q., Ascencio P., Marco J., Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique, Energy, vol. 142, pp. 678–688 (2018), DOI: 10.1016/j.energy.2017.10.043.

[46] Keil P., Jossen A., Aufbau und Parametrierung von Batteriemodellen. 19. DESIGN&ELEKTRONIK- Entwicklerforum Batterien & Ladekonzepte, München (2012), https://mediatum.ub.tum.de/doc/1162416/1162416.pdf, accessed April 2021.

[47] El Mejdoubi A., Oukaour A., Chaoui H., Gualous H., Sabor J., Slamani Y., State-of-charge and state-of- health lithium-ion batteries’ diagnosis according to surface temperature variation, IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2391–2402 (2016), DOI: 10.1109/TIE.2015.2509916.

[48] Chang W.-Y., The state of charge estimating methods for battery: a review, ISRN Applied Mathematics, pp. 1–7 (2013), DOI: 10.1155/2013/953792.

[49] Kalman R.E., A new approach to linear filtering and prediction problems, Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45 (1960), DOI: 10.1115/1.3662552.

[50] Meng J., Ricco M., Luo G., Swierczynski M., Stroe D.-I., Stroe A.-I., Teodorescu R., An overview and comparison of online implementable SOC estimation methods for lithium-ion battery, IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1583–1591 (2018), DOI: 10.1109/TIA.2017.2775179.

[51] Duong V.H., Bastawrous H.A., Lim K.C., See K.W., Zhang P., Dou S.X., SOC estimation for LiFePO4 battery in EVs using recursive least-squares with multiple adaptive forgetting factors, 2014 International Conference on Connected Vehicles and Expo (ICCVE) (2014), DOI: 10.1109/IC-CVE.2014.7297603.

[52] Xia B., Huang R., Lao Z., Zhang R., Lai Y., Zheng W., Wang M., Online parameter identification of lithium-ion batteries using a novel multiple forgetting factor recursive least square algorithm, Energies, vol. 11, no. 11, p. 3180 (2018), DOI: 10.3390/en11113180.

[53] Sun X., Ji J., Ren B., Xie C., Yan D., Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery, Energies, vol. 12, no. 12, p. 2242 (2019), DOI: 10.3390/en12122242.

[54] Chandra Shekar A., Anwar S., Real-time state-of-charge estimation via particle swarm optimization on a lithium-ion electrochemical cell model, Batteries, vol. 5, no. 1, p. 4 (2019), DOI: 10.3390/batteries5010004.

[55] Qays M.O., Buswig Y., Anyi M., Active cell balancing control method for series-connected lithium-ion battery, International Journal of Innovative Technology and Exploring Engineering (IJITEE) (2019), DOI: 10.35940/ijitee.i8905.078919.

[56] Zhang C.-W., Chen S.-R., Gao H.-B., Xu K.-J., Yang M.-Y., State of charge estimation of power battery using improved back propagation neural network, Batteries, vol. 4, no. 4, p. 69 (2018), DOI: 10.3390/batteries4040069.

[57] Jiménez-Bermejo D., Fraile-Ardanuy J., Castaño-Solis S., Merino J., Álvaro-Hermana R., Using dynamic neural networks for battery state of charge estimation in electric vehicles, Procedia Computer Science, vol. 130, pp. 533–540 (2018), DOI: 10.1016/j.procs.2018.04.077.

[58] Thirugnanam K., Ezhil Reena Joy T.P., Singh M., Kumar P., Mathematical modeling of li-ion battery using genetic algorithm approach for V2G applications, IEEE Transactions on Energy Conversion, vol. 29, no. 2, pp. 332–343 (2014), DOI: 10.1109/TEC.2014.2298460.

[59] Liu F., Ma J., Su W., Unscented particle filter for SOC estimation algorithm based on a dynamic parameter identification, Mathematical Problems in Engineering, no. 6, pp. 1–14 (2019), DOI: 10.1155/2019/7452079.

[60] Rozaqi L., Rijanto E., SOC estimation for li-ion battery using optimum RLS method based on genetic algorithm, 8th International Conference on Information Technology and Electrical Engineering (ICITEE) (2016), DOI: 10.1109/ICITEED.2016.7863224.

[61] Styczynski Z., Rudion K., Naumann A., Einführung in Expertensysteme, Springer Verlag (2018).

[62] Wei K., Wu J., Ma W., Li H., State of charge prediction for UAVs based on support vector machine, 7th International Symposium on Test Automation and Instrumentation (ISTAI) (2018), DOI: 10.1049/joe.2018.9201.

[63] Zhang W., Wang W., Lithium-ion battery SoC estimation based on online support vector regression, 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC) (2018), DOI: 10.1109/YAC.2018.8406438.

[64] Alvarez Anton J.C., Garcia Nieto P.J., Blanco Viejo C., Vilan Vilan J.A., Support vector machines used to estimate the battery state of charge, IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5919–5926 (2013), DOI: 10.1109/TPEL.2013.2243918.

[65] Rupp S., Modellierung von Anlagen und Systemen Teil 1, DHBW, CAS 2017, www.srupp.de/ENT/ TM20305_1_Modellierung_von_Anlagen_und_Systemen.pdf+&cd=1&hl=en&ct=clnk&gl=de, ac- cessed July 2021,

[66] Wenge C., Pietracho R., Balischewski S., Arendarski B., Lombardi P., Komarnicki P., Kasprzyk L., Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience, Energies, vol. 13, no. 18, 4590 (2020), DOI: 10.3390/en13184590.

[67] Dambrowski J., Methoden der Ladezustandsbestimmung – mit Blick auf LiFePO4=Li4Ti5O 12-Systeme.


Go to article

Authors and Affiliations

Marcel Hallmann
1
ORCID: ORCID
Christoph Wenge
2
ORCID: ORCID
Przemyslaw Komarnicki
1
ORCID: ORCID
Stephan Balischewski
2
ORCID: ORCID

  1. Magdeburg-Stendal University of Applied Sciences, Germany
  2. Fraunhofer IFF Magdeburg, Germany
Download PDF Download RIS Download Bibtex

Abstract

The optimal energy management (OEM) in a stand-alone microgrid (SMG) is a challenging job because of uncertain and intermittent behavior of clean energy sources (CESs) such as a photovoltaic (PV), wind turbine (WT). This paper presents the effective role of battery energy storage (BES) in optimal scheduling of generation sources to fulfill the load demand in an SMG under the intermittency of theWT and PV power. The OEM is performed by minimizing the operational cost of the SMG for the chosen moderate weather profile using an artificial bee colony algorithm (ABC) in four different cases, i.e. without the BES and with the BES having a various level of initial capacity. The results show the efficient role of the BES in keeping the reliability of the SMG with the reduction in carbon-emissions and uncertainty of the CES power. Also, prove that the ABC provides better cost values compared to particle swarm optimization (PSO) and a genetic algorithm (GA). Further, the robustness of system reliability using the BES is tested for the mean data of the considered weather profile.

Go to article

Authors and Affiliations

Navin Kumar Paliwal
Asheesh Kumar Singh
Navneet Kumar Singh
Download PDF Download RIS Download Bibtex

Abstract

Every developing country is beginning to rely on “green” energy in connection with environmental problems, including the global warming of our planet. It is expected that in the future, the production of electricity using the conversion of sunlight would take the dominant place in the energy infrastructure around the world. However, photovoltaic converters mainly generate intermittent energy due to natural factors (weather conditions) or the time of day in a given area. Therefore, the purpose of this study is to consider options for eliminating the interrupted nature of the operation of a solar installation through innovative additional applications. To achieve this goal, issues of the prospect of using energy storage devices and the choice of the most efficient and reliable of them are considered, as are the environmental friendliness of accumulators/batteries and the economic benefits of their use. The results of the analyses provide an understanding of the factors of using existing technologies with regard to their technical and economic aspects for use in solar energy. It was determined that the most common and predominant types of energy storage are lithium-ion and pumped storage plants. Such accumulation systems guarantee high efficiency and reliability in the operation of solar installation systems, depending on the scale of the solar station. Storage devices that are beginning to gain interest in research are also considered – storage devices made of ceramics of various kinds and thermochemical and liquid-air technologies. This study contributes to the development of an energy-storage system for renewable energy sources in the field of technical and economic optimization.
Go to article

Authors and Affiliations

Anzhela A. Barsegyan
1
ORCID: ORCID
Irina R. Baghdasaryan
1
ORCID: ORCID

  1. Department of Civil Engineering, Architecture, Energetics and Water Systems, Shushi University of Technology, Stepanakert, Armenia
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study is to consider a passive balancing system for battery storage which in the future will increase their reliability, reduce maintenance costs, reduce wear and tear and increase service life, as well as to study a new method of quasi-opposition search for harmony in order to stabilize the supplied electricity. To this end, various theoretical methods of scientific study (analysis, concretization, comparison, generalization) were applied. The method considered in this article for improving the performance of batteries using a passive balancing system, using the example of a typical structural diagram of an autonomous hybrid power plant presented here, would increase the efficiency of pre-project work on the development of highly efficient design and circuit solutions and increase the battery life. The new method of quasi-opposition searches for harmony for hybrid power plants based on renewable and traditional energy sources, taking into account features of their design and operation, would make it possible to stabilize the load frequency of the consumer at the time of switching the station between power sources. This study can be useful for the circle of people associated with energy, for students studying renewable energy in higher education institutions, as well as their teachers, in order to familiarize themselves with the problems of hybrid stations and find options for their solutions.
Go to article

Authors and Affiliations

Maksat Sadykov
1
ORCID: ORCID
Aibek Almanbetov
2
ORCID: ORCID
Ilias Ryskulov
2
ORCID: ORCID
Turdumambet Barpybaev
2
ORCID: ORCID
Alaibek Kurbanbaev
3
ORCID: ORCID

  1. International University of Innovative Technologies and Energy, Kyrgyzstan
  2. Institute of Innovative Technologies and Energy, Kyrgyzstan
  3. I. Razzakov Kyrgyz State Technical University, Kyrgyzstan
Download PDF Download RIS Download Bibtex

Abstract

The abundant use of solar energy in Indonesia has the potential to become electrical energy in a microgrid system. Currently the use of renewable energy sources (RESs) in Indonesia is increasing in line with the reduction of fossil fuels. This paper proposes a new microgrid DC configuration and designs a centralized control strategy to manage the power flow from renewable energy sources and the load side. The proposed design uses three PV arrays (300 Wp PV module) with a multi-battery storage system (MBSS), storage (200 Ah battery). Centralized control in the study used an outseal programmable logic controller (PLC). In this study, the load on the microgrid is twenty housing, so that the use of electrical energy for one day is 146.360 Wh. It is estimated that in one month it takes 4.390.800 Wh of electrical energy. The new DC microgrid configuration uses a hybrid configuration, namely the DC coupling and AC coupling configurations.The results of the study show that the DC microgrid hybrid configuration with centralized control is able to alternately regulate the energy flow from the PV array and MBSS. The proposed system has an efficiency of 98% higher than the previous DC microgrid control strategy and configuration models.
Go to article

Authors and Affiliations

Adhi Kusmantoro
1
Irna Farikhah
2

  1. Department of Electrical Engineering, Universitas PGRI Semarang Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
  2. Department of Mechanical Engineering, Universitas PGRI Semarang, Jl. Sidodadi Timur No. 24 – Dr. Cipto, Semarang 50125, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The problem of lithium-ion cells, which degrade in time on their own and while used, causes a significant decrease in total capacity and an increase in inner resistance. So, it is important to have a way to predict and simulate the remaining usability of batteries. The process and description of cell degradation are very complex and depend on various variables. Classical methods are based, on the one hand, on fitting a somewhat arbitrary parametric function to laboratory data and, on the other hand, on electrochemical modelling of the physics of degradation. Alternative solutions are machine learning ones or nonparametric ones like support-vector machines or the Gaussian process (GP), which we used in this case. Besides using the GP, our approach is based on current knowledge of how to use non-parametric approaches for modeling the electrochemical state of batteries. It also uses two different ways of dealing with GP problems, like maximum likelihood type II (ML-II) methods and the Monte Carlo Markov Chain (MCMC) sampling.
Go to article

Authors and Affiliations

Adrian Dudek
1
ORCID: ORCID
Jerzy Baranowski
1
ORCID: ORCID

  1. Department of Automatic Control and Robotics, AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cells of a prototype powered wheelchair can be designed in various connections to provide different supply voltages which has impact on the efficiency of other wheelchair drive elements. The impact of cell configuration and resulting battery voltage on overall efficiency of power elements have been studied to determine the optimal configuration and voltage of the pack. A brief description of a battery energy storage system was given, and main requirements and variables were introduced to reveal the flexibility of the battery design. The efficiency versus supply voltage plots of a drive converter and battery charger were presented and discussed to find the optimal battery voltage. The motor design was analyzed from the fill factor perspective. The calculated efficiency parameters of all drive power elements were used to discuss and select an optimal battery cell configuration.

Go to article

Authors and Affiliations

Kristaps Vitols
Andrejs Podgornovs
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes an electromechanical transient method to build a battery energy storage system-based virtual synchronous generator model, suitable for a large-scale grid. This model consists of virtual synchronous generator control, system limitation and the model interface. The equations of a second-order synchronous machine, the characteristics of charging/discharging power, state of charge, operating efficiency, dead band and inverter limits are also considered. By equipping the energy storage converter into an approximate synchronous voltage source with an excitation system and speed regulation system, the necessary inertia and damping characteristics are provided for the renewable energy power system with low inertia and weak damping. Based on the node current injection method by the power system analysis software package (PSASP), the control model is built to study the influence of different energy storage systems. A study on the impact of renewable energy unit fluctuation on frequency and the active power of the IEEE 4-machine 2-area system is selected for simulation verification. Through reasonable control and flexible allocation of energy storage plants, a stable and friendly frequency environment can be created for power systems with high-penetration renewable energy.
Go to article

Authors and Affiliations

Juntao Cui
1
Zhao Li
2
ORCID: ORCID
Ping He
2
ORCID: ORCID
Zhijie Gong
2
Jie Dong
2
ORCID: ORCID

  1. Lanzhou Resources and Environment Voc-Tech University, China
  2. Zhengzhou University of Light Industry, China
Download PDF Download RIS Download Bibtex

Abstract

As the amount of high-capacity secondary battery waste gradually increased, waste secondary batteries for industry (high-speed train & HEV) were recycled and materialization studies were carried out. The precipitation experiment was carried out with various conditions in the synthesis of LiNi0.6Co0.2Mn0.2O2 material using a Taylor reactor. The raw material used in this study was a leaching solution generated from waste nickel-based batteries. The nickel-cobalt-manganese (NCM) precursor was prepared by the Taylor reaction process. Material analysis indicated that spherical powder was formed, and the particle size of the precursor was decreased as the reaction speed was increased during the preparation of the NCM. The spherical NCM powder having a particle size of 10 µm was synthesized using reaction conditions, stirring speed of 1000 rpm for 24 hours. The NCM precursor prepared by the Taylor reaction was synthesized as a cathode material for the LIB, and then a coin-cell was manufactured to perform the capacity evaluation.
Go to article

Bibliography

[1] A.M. Bernardes, D.C.R. Espinosa, J.A.S. Tenorio, J. Power Sour. 130, 291 (2004).
[2] D.W. Kim, I. J. Park, N.K. Ahn, H.C. Jung, S.H. Jung, J.Y. Choi, D.H. Yang, J. of Kor. Inst. of Res. Rec. 27 (4), 36 (2018).
[3] D.H. Han, I.J. Park, M.J. Kim, D.W. Kim, H.C. Jung, Kor. J. Met. Mater. 57 (6), 360 (2019).
[4] W.S. Kim, J. Chem. Eng. Jpn. 47, 115 (2014).
[5] R. Schmuch, V. Siozios, M. Winter, T. Placke, Mat. Matters 15, 2 (2020).
Go to article

Authors and Affiliations

Hang-Chul Jung
1
ORCID: ORCID
Deokhyun Han
1
ORCID: ORCID
Dae-Weon Kim
1
ORCID: ORCID
Byungmin Ahn
2
ORCID: ORCID

  1. Institute for Advanced Engineering (IAE), Yongin, Korea
  2. Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea
Download PDF Download RIS Download Bibtex

Abstract

In microgrid distribution generation (DG) sources are integrated parallelly for the economic and efficient operation of a power system. This integration of DG sources may cause many challenges in a microgrid. The islanding condition is termed a condition in which the DG sources in the microgrid continue to power the load even when the grid is cut off. This islanding situation must be identified as soon as possible to avoid the collapse of the microgrid. This work presents the hybrid islanding detection technique. This technique consists of both active and parametric estimation methods such as slip mode shift frequency (SMS) and exact signal parametric rotational invariance technique (ESPRIT), respectively. This technique will easily distinguish between islanding and non-islanding events even under very low power perturbations. The proposed method also has no power quality impact. The proposed method is tested with UL741 standard test conditions.
Go to article

Authors and Affiliations

S. Jayanthi
1
S. Arockia Edwin Xavier
2
ORCID: ORCID
P.S. Manoharan
2
ORCID: ORCID

  1. Sapthagiri College of Engineering, Periyanahali, Dharmapuri, India
  2. Thiagarajar College of Engineering, Madurai, India
Download PDF Download RIS Download Bibtex

Abstract

The overall efficiency of battery energy storage systems (BESSs) strongly depends on the temperature uniformity of the batteries, usually disregarded in studies of the integrated performance of BESSs. This paper presents a new battery thermal management system (BTMS) using a personalized air supply instead of a central air supply. Thermal models are established to predict the thermal behavior of BESSs with 400 battery packs. Moreover, several optimizations comprising the effect of the position and number of air inlets, the number, and angle of the baffles on the air distribution in the ducts are proposed. The results show that the distributed air supply from the main air inlet makes the air velocity in the main air ducts more uniform. It is demonstrated that air deflection is the main source of airflow inhomogeneity at the air outlets. The airflow uniformity is better when the baffles are added at the entrance and the bottom of each riser duct than at other locations. The improved air supply scheme makes the nonuniformity coefficient of air velocity reduced from 1.358 to 0.257. The findings can guide the selection of a cooling form to enhance the safety of BESSs.
Go to article

Authors and Affiliations

Zhu Xinlong
1
Shi Hong
1
Xu Wenbing
1
Pan Jiashuang
1
Zhang Tong
2
Wang Yansong
2

  1. College of Energy & Power Engineering, Jiangsu University of Science and Technology, Mengxi, Jingkou, Zhenjiang 212003, China
  2. Key Laboratory of Aircraft environment control and life support, MIIT, Nanjing University of Aeronautics & Astronautics, Yudao Street, Nanjing 210016, China
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes four different cost-effective configurations of a hybrid energy storage system (HESS) in an electric city bus. A comparison is presented between a battery powered bus (battery bus) and supercapacitor powered bus in two configurations in terms of initial and operational costs. The lithium iron phosphate (LFP) battery type was used in the battery bus and three of the hybrids. In the first hybrid the battery module was the same size as in the battery bus, in the second it was half the size and in the third it was one third the size. The fourth hybrid used a lithium nickel manganese cobalt oxide (NMC) battery type with the same energy as the LFP battery module in the battery bus. The model of LFP battery degradation is used in the calculation of its lifetime range and operational costs. For the NMC battery and supercapacitor, the manufacturers’ data have been adopted. The results show that it is profitable to use HESS in an electric city bus from both the producer and consumer point of view. The reduction of battery size and added supercapacitor module generates up to a 36% reduction of the initial energy storage system (ESS) price and up to a 29% reduction of operational costs when compared to the battery ESS. By using an NMC battery type in HESS, it is possible to reduce operational costs by up to 50% compared to an LFP battery ESS.

Go to article

Authors and Affiliations

M. Wieczorek
M. Lewandowski
W. Jefimowski
Download PDF Download RIS Download Bibtex

Abstract

The article present results of economic efficiency evaluation of storage technology for electricity from coal power plants in large-scale chemical batteries. The benefits of using a chemical lithium-ion battery in a public power plant based on hard coal were determined on the basis of data for 2018 concerning the mining process. The analysis included the potential effects of using a 400 MWh battery to optimize the operation of 350 MW power units in a coal power plant. The research team estimated financial benefits resulting from the reduction of peak loads and the work of individual power units in the optimal load range. The calculations included benefits resulting from the reduction of fuel consumption (coal and heavy fuel oil – mazout) as well as from the reduction of expenses on CO2 emission allowances.

The evaluation of the economic efficiency was enabled by a model created to calculate the NPV and IRR ratios. The research also included a sensitivity analysis which took identified risk factors associated with changes in the calculation assumptions adopted in the analysis into account. The evaluation showed that the use of large-scale chemical batteries to optimize the operation of power units of the subject coal power plant is profitable. A conducted sensitivity analysis of the economic efficiency showed that the efficiency of the battery and the costs of its construction have the greatest impact on the economic efficiency of the technology of producing electricity in a coal power plant with the use of a chemical battery. Other variables affecting the result of economic efficiency are the factors related to battery durability and fuels: battery life cycle, prices of fuels, prices of CO2 emission allowances and decrease of the battery capacity during its lifetime.

Go to article

Authors and Affiliations

Piotr Krawczyk
ORCID: ORCID
Anna Śliwińska
Mariusz Ćwięczek
Download PDF Download RIS Download Bibtex

Abstract

Conventional fuels are the primary source of pollution. Switching towards clean energy becomes increasingly necessary for sustainable development. Electric vehicles are the most suitable alternative for the future of the automobile industry. The battery, being the power source, is the critical element of electric vehicles. However, its charging and discharging rates have always been a question. The discharge rate depends upon various factors such as vehicle load, temperature gradient, surface inclination, terrain, tyre pressure, and vehicle speed. In this work, a 20 Ah, 13S-8P configured lithium-ion battery, developed specifically for a supermileage custom vehicle, is used for experimentation. The abovementioned factors have been analyzed to check the vehicle’s overall performance in different operating conditions, and their effects have been investigated against the battery’s discharge rate. It has been observed that the discharge rate remains unaffected by the considered temperature difference. However, overheating the battery results in thermal runaway, damaging and reducing its life. Increasing the number of brakes to 15, the impact on the discharge rate is marginal; however, if the number of brakes increases beyond 21, a doubling trend in voltage drops was observed. Thus, a smoother drive at a slow-varying velocity is preferred. Experiments for different load conditions and varying terrains show a rise in discharge with increasing load, low discharge for concrete, and the largest discharge for rocky terrain.
Go to article

Authors and Affiliations

Shreya Dhawan
1
Aanchal Sabharwal
2
Rupali Prasad
2
Shreya Shreya
2
Aarushi Gupta
2
Yusuf Parvez
3

  1. Duke University, Durham, USA
  2. Indira Gandhi Delhi Technical University for Women, Mechanical and Automation Engineering, New Delhi, India
  3. Maulana Azad National Urdu University, Mechanical Engineering, Cuttack, Odisha, India

This page uses 'cookies'. Learn more